Threading in C#

Joseph Albahari

Last updated 2011-4-27

Interested in a book on C# and .NET by the same aut hor?

See www.albahari.com/nutshell/

Table of Contents

Part 1: Getting Startedcoiiiiiiiiies i 4
Introduction and CONCEPLScceerrimtmmmmmme e eeiiereeeee e e e e e eninnneeeeeee e A
Lo] g =V o IS [T o P 6...
How Threading WOrKSccooiiiiiiiiiiees e 7
Threads VS ProCeSSEScoooii e 7
Threading’s Uses and MISUSESccmmmmeeeeeee e e 8
Creating and Starting Threadscccoeeeveei 8...
Passing Data to a Thread oo eeennnieinereeeee e 9
NamMING TRrEAASc.eviiiiiiiieee e 11
Foreground and Background Threadscccccccovviiiiiiiniennnn, 11
Thread Priority.........cooooieiiie 12
Exception HaNdliNgouiiiiiiiiicc e 12
Thread POOING......cuiiiiiiiiiee ettt 14
Entering the Thread Pool via TPL...........ceeemiiieeeeeeeeeeeee 15
Entering the Thread Pool Without TPL.........ccccccviviiiieiiiiiiiiininnns 16
Optimizing the Thread POOIvviiicceeeeiieiiieeeeee, 17
Part 2: Basic Synchronization...........cccccceees coviieei e 19
Synchronization ESSeNtialScommmmmeeeeieeeeeeeiiieeeee e l19.
BIOCKING ..o 19.
Blocking VErsus SPIiNNiNgcc.eeeveeeevmmmmn e eeeeeeieeeeeeeeaeeaaenaaaaaeens 20
TRrEAASIALE e e 20.
LOCKING -ttt s 21
Monitor.Enter and MONITOrEXIt............uutmeeeeeeeeeeieeeeieeeieeeeeeeeee 22
Choosing the Synchronization Objectccceeeevivvvvviiiiiiiiiiiienee, 23
WREN 10 LOCK ..o 23
(o Tod ([gTo =TT I 2N o] 011 ox Y2 24
=TS C=To B 0 Tod (T o PP 24
DEAAIOCKS ...ttt 25.
PerformancCe...........ooo oo 6.2
IMIUEEX . . ettt e e et et e e e e e e eeenaa e 26
SEMAPNOIE ..t e e e e e e e e e e aaeneaaenaaneneneenneensen e 2

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl.rights reserved. www.albahari.com/threading/

Thread Safelyooviiiiiiii e 28
Thread Safety and .NET Framework TYPes....mmeeceeeeiiieinnnnn. 28

Thread Safety in Application Servers.......eoeeeoiiiiiiieeeeeennnnns 30
Rich Client Applications and Thread Affinityccccvviiieenen. 30
Immutable ODJECES...........cooei i 32
Signaling with Event Wait Handles............coeeeeeeeeiiiiiiiiiieiieee e, 33
AULORESEIEVENT ... 33
MaNUAIRESEIEVENL............uiiiiiiiiiieett oo e e e e e e e e e aeeaaaaaaaaaaaaaaaaeeeens 37
COoUNtAOWNEVENT ..o 38
Creating a Cross-Process EventWaitHandlecc...................... 39
Wait Handles and the Thread Pool ..., 39
WaitAny, WaitAll, and SignalAndWait ..., 40
Synchronization Contexts..........cooovii i eeeeeeciieeieeeeeieeeeenn AL
REENITANCY ...ccvvvviii it A3,
Part 3: USINg Threadscoiiiiiiiiiiiiiiiis it 44
The Event-Based Asynchronous Patterncccccvvvvevnvinniineinnnnnnnnnnns 44
BackgroundWOrKErccocoeiieiiieiiie i 4D
Using BackgroundWorker............ooo oo 45
Subclassing BackgroundWorkerooooeeeeeiiiiiiiiiieeeee, 47
Interrupt and ADOIT ... e 48
11T 4 U o) RSP PRRRY < 1°)
Y o [0] SO PPRPPPRPY” 1)
Safe CanCellationcooiiiiiiiiiii e 50
Cancellation TOKENScoooiiiiii s 51
VAV 1 (T= 112 Lo o 52
LAZY ST > e s 53.
LazyInitializer..........coooo i 3.5
Thread-LocCal SIOrAgEccoiiiuiiiiees ettt e e 54
[ThreadStatiC]vuveririiiiiiiiiiimmmmms e e e A D
I L (=T= To | o Tor= 1 PP 55
GetData and SetDatacccooeeiieieieeice e 55
I 01 T ST 56
Multithreaded TIMEIScuiiiiiiiiiiet e 56
Single-Threaded TIMEISccccooiiiiiii s e 58
Part 4: Advanced TOPICS ...cooeeeviiiiiiiiiiiiiiies iiieee e e e e e e e e 59
Nonblocking SyNChronizationceeeeeeeeeieeiiiieeeeeeeeeeeeeeeeeee 59
Memory Barriers and Volatilityoommeeeeeeeeeeiiii, 59
INEIOCKE ... 63.
Signaling with Wait and PUISE..........c.ovveeceeiiiiii 56
How to Use Walit and PUISE............oooiii e 65
Producer/Consumer QUEUEuuuuueceeeeeeeeeeeeeeeenennreennnnnnnnennnes 67
WAt TIMEOULS ...ttt et e e 70
Two-Way Signaling and RaCESvieeeeeec e 71
Simulating Wait Handles................oooimmmmmeiiiiiiieeeeeeeeeeen 72
Writing a CountdoWNEVENL..........ccooiii s 74
Thread RENUEZVOUSc.cooiiiiiiiiiiiiie et 75

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl.rights reserved. www.albahari.com/threading/

THE BaArTIEr ClaSS ...uiiviie it e e e reems 75

Reader/Writer LOCKScooo i, 17
Upgradeable Locks and Recursion ... eeeeeeveeeeeeveeeevvennnn. 18
Suspend and RESUMEcoooiiiiii e 80
AbOorting Threadsooo oo 80
Complications with Thread.AbOrt.........ccoovccccceeeeeeiee e, 82
Ending Application DOMAINSvvviiimeccce e 83
ENdiNG PrOCESSESccooiieiiiieeeeee e 84
Part 5: Parallel Programmingccccoociiis coviiiiiiiie e 85
Parallel Programmingeeeeiiesieessssss s sss s ee e e e e e s e e e e e e e e 85
WY PEX? ottt sttt e e e e e e st e e e eeens 85
PEX CONCEPLS ... et 86
PEX COMPONENTS... .ottt et eeeeeeea s 86
Whento Use PFEX ... 87
T SRR 87
Parallel Execution BalliStiCs..............ccceeeeiviviiiiiiiiiiiieiians 89
PLINQ and OFderingueeeeeeeeeeiiies e e e e e e s sseiinnnneeeeeee s 89
PLINQ LimitatioNS.......ccoovuuiiiiiiieeiceeviemmms e ee et e e e e eeannne e e e e eeens 90
Example: Parallel Spellcheckercomeeveveveeeireniiiniinninninnnns 90
Functional PUNtYoooviiiiiiiieeeeee e, 92
Calling Blocking or I/O-Intensive FUNCLIONSccccvvvviieeneeenn. 92
(OF= T To7=] | F= 4o] o 1 94.
(@001 0141 o T = I 1 N1 94
Parallelizing Custom Aggregations...........ccccecveieiieieeeeiiiieiinninnnns 96
The Parallel ClIaSssSccvvvviviiiiiiiiiieeeeemreenis s 100
Parallel.INVOKEooouiiii e e 100
Parallel.For and Parallel.ForEach..........ccceeeeevviiiiiiniiiiniiieiieene, 100
Task ParalleliSm...........uuiiiiiceeeie e e eeene 105
Creating and Starting TasKS..........cuuuuiuevieiiiiiie e 105
Waliting ON TASKSvviiiiiiiiiiiiii e cmmmee e s 107
Exception-Handling Tasksccceevviiiiiiiiiicee 108
Canceling TasKS........ooiiiiiiiiii e 109
(0701 11 V=11 0] o 110
Task Schedulers and UIS ... 113
LI] = 1o (] Y PP 114
TaskComPIEtIONSOUICEccoooiiiiiiii et 114
Working with AggregateEXCePtioNcommmeeeernnnnmniesieeeeeeneeaeeeens 115
Flatten and Handle............coooviuiiiii e, 116
Concurrent ColleCtioNSoovvviiiiiiicceee e, 117
IProducerConsumerCollection<T>coccemmmeeireeiiiiiiin e, 117
LO7e] (o101 f =T 011 = F=To S 1RSSR 118
BlockingCollection<T>...........ooooiiiiiiiiiie e, 119
SpinLock and SpINWaltoooiiii e 211
SPINLOCK. ...ttt 12
SPINWAL ... 221

© 2006-2010 Joseph Albahari & O'Reilly Media, 1Adl. rights reserved

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl.rights reserved. www.albahari.com/threading/

Part 1: Getting Started

Introduction and Concepts

C# supports parallel execution of code through ithuétading. A thread is an independent executidgh,@ble to run
simultaneously with other threads.

A C#client program (Console, WPF, or Windows Forms) stares simgle thread created automatically by the Ch& a
operating system (the “main” thread), and is madéithreaded by creating additional threads. Heaes$mple example

and its output:

All examples assume the following namespaces gperitad:

using System;
using System.Threading;

class ThreadTest

{
static void Main()
{
Thread t = new Thread (WriteY); // Kick off a new thread
t.Start(); // running WriteY()
// Simultaneously, do something on the main thread.
for (int i = @; 1 < 1009; i++) Console.Write ("x");
}
static void WriteY()
{
for (int i = @; i < 1000; i++) Console.Write ("y");
}
}

The main thread creates a new threamh which it runs a method that repeatedly prinesdharacter “y”.
Simultaneously, the main thread repeatedly primischaracter “x”. Here’s the output:

XXXXXXXXXXXXXXXXYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY
XXXXXXXXXXXXXXXXXK KK XXXXXXKXXXXXXKXXKXKXXXYYYYYYYYYYYYY
YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYRRIIXXXXXXXXXXXXKKKKKX
XXXXKXXXXXXXRRXXXXRXXXYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY
YYYYYYYYYYYYYXXXXXXXXXXXXXXKKKKKKXKXXXXXXXXXXXKXKKKKX

Main Thread
=, thread ends
new application
7 Thread time —» ends
< Start() thread ends
= YYYYYYYYYYYYYYYYYYYYYYYYYYYVYYYYYYYYYYYYY- - - - YYYYYYYYYYYYY
Worker Thread

Once started, a threadisAlive property returnsrue, until the point where the thread ends. A threrdsevhen the
delegate passed to theread’s constructor finishes executing. Once endedreatih cannot restart.

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl.rights reserved. www.albahari.com/threading/ 4

The CLR assigns each thread its own memory statikegdocal variables are kept separate. In th¢ eeaxmple, we
define a method with a local variable, then cadl thethod simultaneously on the main thread andwyrereated
thread:

static void Main()

{
new Thread (Go).Start(); // Call Go() on a new thread
Go(); // Call Go() on the main thread
}
static void Go()
{

// Declare and use a local variable - 'cycles'
for (int cycles = @; cycles < 5; cycles++) Console.Write ('?');

}

PPPPPPRPR?

A separate copy of the cycles variable is createdaxh thread's memory stack, and so the outpprtadictably, ten
question marks.

Threads share data if they have a common refetteribe same object instance. For example:

class ThreadTest
bool done;

static void Main()

{

ThreadTest tt = new ThreadTest(); // Create a common instance
new Thread (tt.Go).Start();
tt.Go();

}

// Note that Go is now an instance method
void Go()
{

}
}

Because both threads cali() on the sam&hreadTest instance, they share thene field. This results in "Done"
being printed once instead of twice:

if (!done) { done = true; Console.WriteLine ("Done"); }

Done
Static fields offer another way to share data betwtareads. Here's the same example dithe as a static field:

class ThreadTest

{

static bool done; // Static fields are shared between all threads

static void Main()

{
new Thread (Go).Start();

Go();
}

static void Go()
{

if (!done) { done = true; Console.WriteLine ("Done"); }

}

Both of these examples illustrate another key cpnhdbat of thread safety (or rather, lack of ®he output is actually
indeterminate: it's possible (though unlikely) thBbne” could be printed twice. If, however, we swte order of
statements in theo method, the odds of “Done” being printed twiceugodramatically:

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl.rights reserved. www.albahari.com/threading/ 5

static void Go()
{

if (!done) { Console.WriteLine ("Done"); done = true; }

}

Done
Done (usually!)

The problem is that one thread can be evaluatiadftstatement right as the other thread is executiagrtiteLine
statement—before it's had a chance todseie to true.

The remedy is to obtain an exclusive lock whiledirg and writing to the common field. C# providbe tock
statement for just this purpose:

class ThreadSafe

{

static bool done;
static readonly object locker = new object();

static void Main()

{
new Thread (Go).Start();

Go();
}

static void Go()

{
lock (locker)

{

if (!done) { Console.WriteLine ("Done"); done = true; }

}
¥

When two threads simultaneously contend a lockh{gcaselocker), one thread waits, or blocks, until the lock
becomes available. In this case, it ensures ordytioread can enter the critical section of codetahe, and “Done”
will be printed just once. Code that's protectediunh a manner—from indeterminacy in a multithregdiontext—is
called thread-safe.

Shared data is the primary cause of complexityabsture errors in multithreading. Although oftesegtial,
it pays to keep it as simple as possible.

A thread, whileblocked doesn't consume CPU resources.

Join and Sleep

You can wait for another thread to end by callitsggoin method. For example:

static void Main()

{
Thread t = new Thread (Go);

t.Start();
t.Join();
Console.WriteLine ("Thread t has ended!");

}

static void Go()

{
for (int i = @; i < 1000; i++) Console.Write ("y");
¥

This prints “y” 1,000 times, followed by “Threadhas ended!” immediately afterward. You can inclademeout when
calling Join, either in milliseconds or asTameSpan. It then returnsrue if the thread ended dialse if it timed out.

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl.rights reserved. www.albahari.com/threading/ 6

Thread.Sleep pauses the current thread for a specified period:

Thread.Sleep (TimeSpan.FromHours (1)); // sleep for 1 hour
Thread.Sleep (500); // sleep for 500 milliseconds

While waiting on a&leep or Join, a thread is blocked and so does not consume €ftlirces.

Thread.Sleep (@) relinquishes the thread’s current time slice imiatedy, voluntarily handing over the CPU
to other threads. Framework 4.0’s neélread.Yield() method does the same thing—except that it
relinquishes only to threads running on saeneprocessor.

Sleep(0@) orYield is occasionally useful in production code for athed performance tweaks. It's also an
excellent diagnostic tool for helping to uncoveretd safety issues: if insertilgread.Yield() anywhere in
your code makes or breaks the program, you alnasstioly have a bug.

How Threading Works

Multithreading is managed internally by a threaldestuler, a
function the CLR typically delegates to the opemgisystem. A i
thread scheduler ensures all active threads areatdid appropriate Kiss goodbye to SQL
execution time, and that threads that are waitimigiacked (for Management Studio
instance, on an exclusive lock or on user input)ndt consume ‘5?}?}??‘%

CPU time.

On a single-processor computer, a thread schegetésrmstime-
slicing—rapidly switching execution between each of thivac
threads. Under Windows, a time-slice is typicafiythe tens-of-
milliseconds region—much larger than the CPU ovadhe
actually switching context between one thread amadteer (which
is typically in the few-microseconds region).

On a multi-processor computer, multithreading iplamented with
a mixture of time-slicing and genuine concurrenglgere different
threads run code simultaneously on different CPii$salmost
certain there will still be some time-slicing, basa of the
operating system’s need to service its own threaaswell as

those of other applications. LI N Q Pa d

A thread is said to bgreemptedvhen its execution is interrupted FREE
due to an external factor such as time-slicingnbrst situations, a
thread has no control over when and where it'srppeed.

Query databases in a
modern query language

Threads vs Processes
Written by the author of this article

A thread is analogous to the operating system gsoitewhich your
application runs. Just as processes run in paailel computer, www.linqpad.net
threads run in paralletithin a single proces$rocesses are fully
isolated from each other; threads have just adidnitegree of
isolation. In particular, threads share (heap) nrgmath other threads running in the same appliatiThis, in part, is
why threading is useful: one thread can fetch gathe background, for instance, while anotherdtrean display the
data as it arrives.

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl.rights reserved. www.albahari.com/threading/ 7

Threading’s Uses and Misuses

Multithreading has many uses; here are the mostramm
Maintaining a responsive user interface

By running time-consuming tasks on a parallel “vastkthread, the main Ul thread is free to contipuecessing
keyboard and mouse events.

M aking efficient use of an otherwise blocked CPU

Multithreading is useful when a thread is awaitingesponse from another computer or piece of haedWehile
one thread is blocked while performing the taskeothreads can take advantage of the otherwiserdaebed
computer.

Parallel programming

Code that performs intensive calculations can eeef@aster on multicore or multiprocessor compuitettse
workload is shared among multiple threads in aitiivand-conquer” strategy (see Part 5).

Speculative execution

On multicore machines, you can sometimes improvipaance by predicting something that might neetde
done, and then doing it ahead of time. LINQPad tisisgechnique to speed up the creation of newigsieA
variation is to run a number of different algorithin parallel that all solve the same task. Whielhane finishes
first “wins”—this is effective when you can’t knomhead of time which algorithm will execute fastest.

Allowing requeststo be processed simultaneously

On a server, client requests can arrive concugramiti so need to be handled in parallel (the .NEamMEwWork
creates threads for this automatically if you uSPANET, WCF, Web Services, or Remoting). This dao be
useful on a client (e.g., handling peer-to-peewnéting—or even multiple requests from the user).

With technologies such as ASP.NET and WCF, you beaynaware that multithreading is even taking pltaceless
you access shared data (perhaps via static figitlsput appropriate locking, running afoul of thdesafety.

Threads also come with strings attached. The biggéisat multithreading can increase complexitgvidg lots of
threads does not in and of itself create much ceriiyt it's the interaction between threads (tyflicaia shared data)
that does. This applies whether or not the integads intentional, and can cause long developrogeies and an
ongoing susceptibility to intermittent and nonregroible bugs. For this reason, it pays to keepacté®on to a
minimum, and to stick to simple and proven desighsrever possible. This article focuses largelylealing with just
these complexities; remove the interaction andeteenuch less to say!

A good strategy is to encapsulate multithreadimgiclinto reusable classes that can be independexdlyined
and tested. The Framework itself offers many hideeel threading constructs, which we cover later.

Threading also incurs a resource and CPU costiadading and switching threads (when there are ractige threads
than CPU cores)—and there’s also a creation/teandmst. Multithreading will not always speed upyo
application—it can even slow it down if used exoesy or inappropriately. For example, when heaigkd/O is
involved, it can be faster to have a couple of wottkreads run tasks in sequence than to haverd@dh executing at
once. (In Signaling with Wait and Pulse, we desetibw to implement a producer/consumer queue, wirictides just
this functionality.)

Creating and Starting Threads

As we saw in the introduction, threads are creas#ag theThread class’s constructor, passing intfaeadStart
delegate which indicates where execution shouldihbdgere’s how th&hreadStart delegate is defined:

public delegate void ThreadStart();

Calling Start on the thread then sets it running. The threadimass until its method returns, at which point theead
ends. Here's an example, using the expanded C#sjomit creating &headStart delegate:

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl.rights reserved. www.albahari.com/threading/ 8

class ThreadTest

{

static void Main()

{
Thread t = new Thread (new ThreadStart (Go));

t.Start(); // Run Go() on the new thread.
Go(); // Simultaneously run Go() in the main thread.

}

static void Go()
{

Console.WriteLine ("hello!");

}
}

In this example, threatd executeso () — at (much) the same time the main thread Gal(§. The result is two near-
instant hellos.

A thread can be created more conveniently by syiagifust a method group—and allowing C# to infes t
ThreadStart delegate:

Thread t = new Thread (Go); // No need to explicitly use ThreadStart
Another shortcut is to use a lambda expressiomonymous method:

static void Main()

{
Thread t = new Thread (() => Console.WriteLine ("Hello!"));

t.Start();
¥

Passing Data to a Thread

The easiest way to pass arguments to a threadwsttarethod is to execute a lambda expression #fiattbe method
with the desired arguments:

static void Main()

{
Thread t = new Thread (() => Print ("Hello from t!"));

t.Start();
}

static void Print (string message)

{

Console.WriteLine (message);

}

With this approach, you can pass in any numbergfraents to the method. You can even wrap theeentir
implementation in a multi-statement lambda:

new Thread (() =>
{

Console.WriteLine ("I'm running on another thread!");
Console.WriteLine ("This is so easy!");
}).Start();

You can do the same thing almost as easily in G#vi&h anonymous methods:

new Thread (delegate()
{

}):ééart();

Another technique is to pass an argument Tihteead’s Start method:

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl.rights reserved. www.albahari.com/threading/

static void Main()

{
Thread t = new Thread (Print);

t.Start ("Hello from t!");
}

static void Print (object messageObj)

{

string message = (string) messageObj; // We need to cast here
Console.WriteLine (message);

}
This works becausehread’s constructor is overloaded to accept either af tlglegates:

public delegate void ThreadStart();
public delegate void ParameterizedThreadStart (object obj);

The limitation ofParameterizedThreadStart is that it accepts only one argument. And beciissef typeobject,
it usually needs to be cast.

Lambda expressions and captured variables

As we saw, a lambda expression is the most powemdylto pass data to a thread. However, you musabeful about
accidentally modifyingaptured variablegfter starting the thread, because these variabéeshared. For instance,
consider the following:

for (int i = 0; i < 10; i++)
new Thread (() => Console.Write (i)).Start();

The output is nondeterministic! Here's a typicaiui
0223557799

The problem is that thevariable refers to theamememory location throughout the loop’s lifetime.eféfore, each
thread call€onsole.Write on a variable whose value may change as it isinghn

This is analogous to the problem we describe irpt@ad Variables” in Chapter 8 of C# 4.0 in a NetshThe
problem is less about multithreading and more alidts rules for capturing variables (which are s
undesirable in the case B6r andforeach loops).

The solution is to use a temporary variable deid:

for (int i = @; i < 10; i++)
{

int temp = i;

new Thread (() => Console.Write (temp)).Start();
}

Variabletemp is now local to each loop iteration. Thereforestethread captures a different memory location and
there’s no problem. We can illustrate the problarthe earlier code more simply with the followingenple:

string text = "t1";
Thread t1 = new Thread (() => Console.WritelLine (text));

text = "t2";
Thread t2 = new Thread (() => Console.WritelLine (text));

tl.Start();
t2.Start();

Because both lambda expressions capture the saxtevariable,t2 is printed twice:

t2
t2

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl.rights reserved. www.albahari.com/threading/ 10

Naming Threads

_ _ Get the whole book
Each thread hasname property that you can set for the benefit of defing.
This is particularly useful in Visual Studio, sinites thread’s name is displayeq cni: introducing C#
in the Threads Window and Debug Location toolbau ¥an set a thread’s Ch2: C# Language Basics

; . ; ; ; Ch3: Creating Types in C#
name just once; attempts to change it later wihthan exception. Cha: Advanced Ck Features

The staticThread.CurrentThread property gives you the currently executin{ ChS: Framework Fundamentals

; :) . Ch7: Collections
thread. In the following example, we set the manead’s name: Ch8: LINQ Queries

Ch9: LINQ Operators

class ThreadNaming Ch10: LING to XML

{ . . . Ch11: Other XML Technologies
static void Main() Ch12: Disposal & Garbage Collection
{ Ch13: Code Contracts & Diagnostics
Thread.CurrentThread.Name = "main"; Ch14: Streams & I/0
Thread worker = new Thread (Go); Ch15: Networking
worker.Name = "worker"; Ch16: Serialization

worker.Start(); Ch17: Assemblies

Ch18: Reflection & Metadata

Go(); Ch19: Dynamic Programming
} Ch20: Security
Ch21: Threading
static void Go() Ch22: Parallel Programming
{ Ch23: Asynchronous Methods
Console.WriteLine ("Hello from " + Thread.CurrentThread.Name); Ch24: Application Domains
} Ch25: Native and COM Interop

Ch26: Regular Expressions

C# 4.0 in a Nutshell

www.albahari.com/nutshell

}

Foreground and Background Threads

By default, threads you create explicitly &meeground threadsForeground
threads keep the application alive for as longrgsame of them is running,
whereasdackground threaddo not. Once all foreground threads finish, thgligation ends, and any background
threads still running abruptly terminate.

A thread'’s foreground/background status has ndioeldo its priority or allocation of execution tem

You can query or change a thread’s backgroundsstetimg itsIsBackground property. Here's an example:

class PriorityTest

{
static void Main (string[] args)
{
Thread worker = new Thread (() => Console.ReadLine());
if (args.Length > @) worker.IsBackground = true;
worker.Start();
}
}

If this program is called with no arguments, therken thread assumes foreground status and will ovatherReadLine
statement for the user to press Enter. Meanwlhitentain thread exits, but the application keepsinghbecause a
foreground thread is still alive.

On the other hand, if an argument is passethio (), the worker is assigned background status, angribgram exits
almost immediately as the main thread ends (tetinigéheReadLine).

When a process terminates in this manner,famy11y blocks in the execution stack of background thsesze
circumvented. This is a problem if your program éypfinally (orusing) blocks to perform cleanup work such as
releasing resources or deleting temporary filesa¥ad this, you can explicitly wait out such bagikgnd threads upon
exiting an application. There are two ways to aqoish this:

 If you've created the thread yourself, cadlin on the thread.
 If you're on a pooled thread, use an event waidlan

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl.rights reserved. www.albahari.com/threading/ 11

In either case, you should specify a timeout, 30gan abandon a renegade thread should it refusgdio for some
reason. This is your backup exit strategy: in the, ggou want your application to close—without tleer having to
enlist help from the Task Manager!

Foreground threads don’t require this treatmeritybu must take care to avoid bugs that could cthes¢hread not to
end. A common cause for applications failing ta exoperly is the presence of active foregroundats.

If a user uses the Task Manager to forcibly endEr. process, all threads “drop dead” as though thene
background threads. This is observed rather thanrdented behavior, and it could vary dependinghen t
CLR and operating system version.

Thread Priority

A thread'sPriority property determines how much execution time is gelative to other active threads in the
operating system, on the following scale:

enum ThreadPriority { Lowest, BelowNormal, Normal, AboveNormal, Highest }

This becomes relevant only when multiple threadssanultaneously active.

Think carefully before elevating a thread’s prigsitit can lead to problems such as resource starvébir
other threads.

Elevating a thread'’s priority doesn’t make it capatfl performing real-time work, because it's dfiltottled by the
application’s process priority. To perform real-¢iwork, you must also elevate the process priostpg theProcess
class inSystem.Diagnostics (we didn't tell you how to do this):

using (Process p = Process.GetCurrentProcess())
p.PriorityClass = ProcessPriorityClass.High;

ProcessPriorityClass.High is actually one notch short of the highest priofitealtime. Setting a process priority
to Realtime instructs the OS that you never want the proaegtetd CPU time to another process. If your progra
enters an accidental infinite loop, you might feakn the operating system locked out, with notisimgrt of the power
button left to rescue you! For this reasbigh is usually the best choice for real-time applizasi

If your real-time application has a user interfagleyating the process priority gives screen ulakeessive
CPU time, slowing down the entire computer (patéidy if the Ul is complex). Lowering the main tlaes
priority in conjunction with raising the procesgsority ensures that the real-time thread doegett
preempted by screen redraws, but doesn’t solvpriii@em of starving other applications of CPU time,
because the operating system will still allocatpdbiportionate resources to the process as a whiolieleal
solution is to have the real-time worker and ustarface run as separate applications with diffiepeocess
priorities, communicating via Remoting or memorygpad files. Memory-mapped files are ideally suiied
this task; we explain how they work in Chaptersahd 25 of C# 4.0 in a Nutshell.

Even with an elevated process priority, there'srét lto the suitability of the managed environmanhandling hard
real-time requirements. In addition to the issudatency introduced by automatic garbage collectibe operating
system may present additional challenges—evenrforamaged applications—that are best solved witliceest
hardware or a specialized real-time platform.

Exception Handling

Any try/catch/finally blocks in scope when a thread is created are oflewance to the thread when it starts
executing. Consider the following program:

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl.rights reserved. www.albahari.com/threading/ 12

public static void Main()

{
try

{
new Thread (Go).Start();

}

catch (Exception ex)
{
// We'll never get here!
Console.WriteLine ("Exception!");
}
}

static void Go() { throw null; } // Throws a NullReferenceException

Thetry/catch statement in this example is ineffective, andrteely created thread will be encumbered with an
unhandlediullReferenceException. This behavior makes sense when you consideetwt thread has an
independent execution path.

The remedy is to move the exception handler inkasthmethod:

public static void Main()

{
new Thread (Go).Start();

}

static void Go()

{
try

{

throw null; // The NullReferenceException will get caught below

}...

catch (Exception ex)

{
Typically log the exception, and/or signal another thread
that we've come unstuck

-
}

You need an exception handler on all thread engthods in production applications—just as you dsuélly at a
higher level, in the execution stack) on your nthiread. An unhandled exception causes the wholkcafipn to shut
down. With an ugly dialog!

In writing such exception handling blocks, rarelguld youignorethe error: typically, you'd log the details o
the exception, and then perhaps display a dialogvatg the user to automatically submit those detai your
web server. You then might shut down the applicatibecause it's possible that the error corrupted th
program’s state. However, the cost of doing shas the user will lose his recent work—open docus)eor
instance.

The “global” exception handling events for WPF &diohdows Forms applications
(Application.DispatcherUnhandledException andApplication.ThreadException) fire only for
exceptions thrown on the main Ul thread. You stillst handle exceptions on worker threads manually.

AppDomain.CurrentDomain.UnhandledException fires on any unhandled exception, but provides no
means of preventing the application from shuttiogvd afterward.

There are, however, some cases where you don’ttodeghdle exceptions on a worker thread, becdneseNtET
Framework does it for you. These are covered iropeg sections, and are:

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl.rights reserved. www.albahari.com/threading/ 13

» Asynchronous delegates
* BackgroundWorker

e The Task Parallel Library (conditions apply)

Thread Pooling

Whenever you start a thread, a few hundred micoysscare spent organizing such things as a fregatpiocal
variable stack. Each thread also consumes (by iegaound 1 MB of memory. Thiiread poolcuts these overheads
by sharing and recycling threads, allowing mulgtling to be applied at a very granular level witrperformance
penalty. This is useful when leveraging multicoregessors to execute computationally intensive ¢ogearallel in
“divide-and-conquer” style.

The thread pool also keeps a lid on the total nurobworker threads it will run simultaneously. Tomny active
threads throttle the operating system with admiaiiste burden and render CPU caches ineffectiveeQ@nlimit is
reached, jobs queue up and start only when anbthshes. This makes arbitrarily concurrent applaas possible,
such as a web server. (Tagynchronous method patteman advanced technique that takes this furthendking
highly efficient use of the pooled threads; we diégcthis in Chapter 23 of C# 4.0 in a Nutshell).

There are a number of ways to enter the thread pool
* Via the Task Parallel Library (from Framework 4.0)
e By callingThreadPool.QueueUseriWorkItem
» Via asynchronous delegates
* Via BackgroundWorker

The following constructs use the thread piodirectly.
 WCF, Remoting, ASP.NET, and ASMX Web Services agtion servers

e System.Timers.Timer andSystem.Threading.Timer

» Framework methods that endAsyn¢ such as those arebClient (the event-based asynchronous pattenn),
and mosBeginxxx methods (th@synchronous programming moglttern)

« PLINQ

TheTask Parallel Library(TPL) and PLINQ are sufficiently powerful and hitgvel that you'll want to use them to
assist in multithreading even when thread poolingriimportant. We discuss these in detail in Patight now, we'll
look briefly at how you can use thask class as a simple means of running a delegatepoolad thread.

There are a few things to be wary of when usingembthreads:

* You cannot set theame of a pooled thread, making debugging more diffi¢although you can attach a
description when debugging in Visual Studio’s Thigaindow).

» Pooled threads are always background threadsigthisually not a problem).

» Blocking a pooled thread may trigger additiona¢taty in the early life of an application unless yaill
ThreadPool.SetMinThreads (see Optimizing the Thread Pool).

You are free to change the priority of a pooleeaitk—it will be restored to normal when releasedkhiadhe
pool.

You can query if you're currently executing on afeal thread via the property
Thread.CurrentThread.IsThreadPoolThread.

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl.rights reserved. www.albahari.com/threading/ 14

Entering the Thread Pool via TPL

You can enter the thread pool easily usingTthek classes in the Task Parallel Library. Thak classes were
introduced in Framework 4.0: if you're familiar withe older constructs, consider the nongererik class a
replacement forhreadPool .QueueUseriWorkItem, and the generitask<TResult> a replacement for asynchronous
delegates. The newer constructs are faster, mongeogent, and more flexible than the old.

To use the nongeneriask class, calfask.Factory.StartNew, passing in a delegate of the target method:

static void Main() // The Task class is in System.Threading.Tasks

{
Task.Factory.StartNew (Go);

}

static void Go()
{

Console.WriteLine ("Hello from the thread pool!");

}

Task.Factory.StartNew returns arask object, which you can then use to monitor the-tafk instance, you can
wait for it to complete by calling it8ait method.

Any unhandled exceptions are conveniently rethromto the host thread when you call a task'st method.
(If you don't callwait and abandon the task, an unhandled exceptiorshill down the process as with an
ordinary thread.)

The generidask<TResult> class is a subclass of the nongengsigk. It lets you get a return value back from the task
after it finishes executing. In the following exalmpwve download a web page usifgsk<TResult>:

static void Main()

{
// Start the task executing:
Task<string> task = Task.Factory.StartNew<string>
(() => DownloadString ("http://www.lingpad.net"));

// We can do other work here and it will execute in parallel:
RunSomeGOtherMethod();

// When we need the task's return value, we query its Result property:
// If it's still executing, the current thread will now block (wait)
// until the task finishes:

string result = task.Result;

}

static string DownloadString (string uri)

{

using (var wc = new System.Net.WebClient())
return wc.DownloadString (uri);

¥
(The<string> type argument in boldface is for clarity: it wolddinferredif we omitted it.)
Any unhandled exceptions are automatically rethresaen you query the tasiResult property, wrapped in an

AggregateException. However, if you fail to query itBesult property (and don’t callait) any unhandled
exception will take the process down.

The Task Parallel Library has many more featured,ig particularly well suited to leveraging mudiie processors.
We'll resume our discussion of TPL in Part 5.

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl.rights reserved. www.albahari.com/threading/ 15

Entering the Thread Pool Without TPL

You can't use the Task Parallel Library if youasgeting an earlier version of the .NET Framewqiof to 4.0).
Instead, you must use one of the older constroctsritering the thread podlhreadPool.QueueUseriorkItem and
asynchronous delegates. The difference betweemvthis that asynchronous delegates let you retata fitom the
thread. Asynchronous delegates also marshal argpégo back to the caller.

QueueUserWorkltem
To useQueueUserWorkItem, simply call this method with a delegate that yeant to run on a pooled thread:
static void Main()
ThreadPool.QueueUseriWorkItem (Go);

ThreadPool.QueueUseriWorkItem (Go, 123);
Console.ReadLine();

}

static void Go (object data) // data will be null with the first call.
! Console.WriteLine ("Hello from the thread pool! " + data);

}

// Output:

Hello from the thread pool!
Hello from the thread pool! 123

Our target methodjo, must accept a singtdject argument (to satisfy théaitCallback delegate). This provides a
convenient way of passing data to the method likestvith ParameterizedThreadStart. Unlike with Task,
QueueUserWorkItem doesn't return an object to help you subsequemilyage execution. Also, you must explicitly
deal with exceptions in the target code—unhandiegmtions will take down the program.

Asynchronous delegates

ThreadPool.QueueUserWorkItem doesn’t provide an easy mechanism for gettingnetalues back from a thread
after it has finished executing. Asynchronous dategnvocations (asynchronous delegates for sholip this,
allowing any number of typed arguments to be passedth directions. Furthermore, unhandled exosstion
asynchronous delegates are conveniently rethrowtheaoriginal thread (or more accurately, the thréwat calls
EndInvoke), and so they don’t need explicit handling.

Don't confuse asynchronous delegates with asyncu®methods (methods starting wigaginor End, such
asFile.BeginRead/File.EndRead). Asynchronous methods follow a similar protocotwardly, but they
exist to solve a much harder problem, which we idlesén Chapter 23 of C# 4.0 in a Nutshell.

Here’s how you start a worker task via an asynobusrdelegate:

1. Instantiate a delegate targeting the method you teatun in parallel (typically one of the predef@Func
delegates).

2. CallBeginInvoke on the delegate, saving it8syncResult return value.
BeginInvoke returns immediately to the caller. You can then perform other activities while the pooled
thread is working.

3. When you need the results, calldInvoke on the delegate, passing in the saugsgyncResult object.

In the following example, we use an asynchronousgdge invocation to execute concurrently withriegn thread, a
simple method that returns a string’s length:

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl.rights reserved. www.albahari.com/threading/ 16

static void Main()

{
Func<string, int> method = Work;
IAsyncResult cookie = method.BeginInvoke ("test", null, null);

// ... here's where we can do other work in parallel...

int result = method.EndInvoke (cookie);
Console.WriteLine ("String length is: " + result);

}

static int Work (string s) { return s.Length; }

EndInvoke does three things. First, it waits for the asypnaous delegate to finish executing, if it hasreatly.
Second, it receives the return value (as well gs-afi or out parameters). Third, it throws any unhandled worker
exception back to the calling thread.

If the method you're calling with an asynchronoesedate has no return value, you are still (tecilyic
obliged to calEndInvoke. In practice, this is open to debate; there aremid@nvoke police to administer
punishment to noncompliers! If you choose not t# BadInvoke, however, you'll need to consider excepti
handling on the worker method to avoid silent ki

You can also specify a callback delegate whenrapifleginInvoke—a method accepting aisyncResult object
that's automatically called upon completion. THiswas the instigating thread to “forget” about th&ynchronous
delegate, but it requires a bit of extra work &t ¢hllback end:

static void Main()

{

Func<string, int> method = Work;
method.BeginInvoke ("test", Done, method);
/] ...
//

}

static int Work (string s) { return s.Length; }

static void Done (IAsyncResult cookie)

{

var target = (Func<string, int>) cookie.AsyncState;
int result = target.EndInvoke (cookie);
Console.WriteLine ("String length is: "

}

The final argument tBeginInvoke is a user state object that populatesithencState property ofIAsyncResult. It
can contain anything you like; in this case, weising it to pass theethod delegate to the completion callback, so we
can callEndInvoke on it.

+ result);

Optimizing the Thread Pool

The thread pool starts out with one thread indtslpAs tasks are assigned, the pool manager tsij@ew threads to
cope with the extra concurrent workload, up to ximam limit. After a sufficient period of inactiwit the pool
manager may “retire” threads if it suspects thahgso will lead to better throughput.

You can set the upper limit of threads that thel polb create by callingrhreadPool.SetMaxThreads; the defaults
are:

* 1023 in Framework 4.0 in a 32-bit environment
» 32768 in Framework 4.0 in a 64-bit environment
» 250 per core in Framework 3.5

» 25 per core in Framework 2.0

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl.rights reserved. www.albahari.com/threading/ 17

(These figures may vary according to the hardwacteaperating system.) The reason there are thay ieda ensure

progress should some threads be blocked (idlingevetwaiting some condition, such as a response &oemote
computer).

You can also set a lower limit by callifgreadPool.SetMinThreads. The role of the lower limit is subtler: it's an
advanced optimization technique that instructspit® manager not tdelayin the allocation of threads until reaching
the lower limit. Raising the minimum thread coumpiroves concurrency when there are blocked thrgsagssidebar).

The default lower limit is one thread per processe—the minimum that allows full CPU utilizatio@n
server environments, though (such ASP.NET undgr the lower limit is typically much higher—as muah
50 or more.

How Does the Minimum Thread Count Work?

Increasing the thread pool’s minimum thread coantdoesn’t actually force threads to be created right
away—threads are created only on demand. Rathaestiticts the pool manager to create up tlareads the
instantthey are required. The question, then, is why ddlué thread pool otherwise delay in creating astir
when it's needed?

The answer is to prevent a brief burst of shordiactivity from causing a full allocation of thosa suddenly
swelling an application’s memory footprint. To Bluate, consider a quad-core computer runningeafcli
application that enqueues 40 tasks at once. If esthperforms a 10 ms calculation, the whole thiiigbe
over in 100 ms, assuming the work is divided amitwegfour cores. Ideally, we’'d want the 40 tasksutoon
exactly four threads

e Any less and we’d not be making maximum use ofalt cores.

* Any more and we’'d be wasting memory and CPU tineating unnecessary threads.

And this is exactly how the thread pool works. Mg the thread count to the core count allowsogiam to
retain a small memory footprint without hurting fsemance—as long as the threads are efficientld use
(which in this case they are).

But now suppose that instead of working for 10 eash task queries the Internet, waiting half asédor a

response while the local CPU is idle. The pool ngan'a thread-economy strategy breaks down; it wool
do better to create more threads, so all the latequneries could happen simultaneously.

Fortunately, the pool manager has a backup plats. dueue remains stationary for more than haeond, it
responds by creating more threads—one every hetfrgk—up to the capacity of the thread pool.

The half-second delay is a two-edged sword. Omtieshand, it means that a one-off burst of briéf/dg
doesn’t make a program suddenly consume an extracessary 40 MB (or more) of memory. On the other
hand, it can needlessly delay things when a pablexhd blocks, such as when querying a databasallorg
WebClient.DownloadFile. For this reason, you can tell the pool managétmdelay in the allocation of the
first x threads, by callingetMinThreads, for instance:

ThreadPool.SetMinThreads (50, 50);

(The second value indicates how many threads tgrass /O completion ports, which are used by AiM,
described in Chapter 23 of C# 4.0 in a Nutshell.)

The default value is one thread per core.

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl.rights reserved. www.albahari.com/threading/

18

Part 2: Basic Synchronization

Synchronization Essentials

So far, we've described how to start a task onreaith configure a thread, and pass data in botiettbns. We've also
described how local variables are private to aathi@nd how references can be shared among thedksgng them to
communicate via common fields.

The next step isynchronizationcoordinating the actions of threads for a preditet outcome. Synchronization is
particularly important when threads access the s#atee it's surprisingly easy to run aground irsthiea.

Synchronization constructs can be divided into fmategories:
Simple blocking methods

These wait for another thread to finish or for sigubof time to elapsesleep, Join, andTask.Wait are simple
blocking methods.

L ocking constructs

These limit the number of threads that can perfeome activity or execute a section of code at a.fifrclusive
locking constructs are most common—these allowqustthread in at a time, and allow competing tisda
access common data without interfering with eatlentThe standard exclusive locking constructslar
(Monitor.Enter/Monitor.Exit), Mutex, andSpinLock. The nonexclusive locking constructs aesmaphore,
SemaphoreSlim, and the reader/writer locks.

Signaling constructs

These allow a thread to pause until receiving #ication from another, avoiding the need for ineggnt polling.
There are two commonly used signaling devices: iewait handles antdonitor’s Wait/Pulse methods.
Framework 4.0 introduces tlieuntdownEvent andBarrier classes.

Nonblocking synchronization constructs

These protect access to a common field by callp@niprocessor primitives. The CLR and C# provide th
following nonblocking construct§hread.MemoryBarrier, Thread.VolatileRead, Thread.VolatilelWrite,
thevolatile keyword, and th@nterlocked class.

Blocking is essential to all but the last categdmst’s briefly examine this concept.

Blocking

A thread is deemeblockedwhen its execution is paused for some reason, asiethers leeping or waiting for another
to end viaJoin or EndInvoke. A blocked thread immediateljeldsits processor time slice, and from then on
consumes no processor time until its blocking ciowliis satisfied. You can test for a thread bditagked via its
ThreadState property:

bool blocked = (someThread.ThreadState & ThreadState.WaitSleepJoin) != 0;

(Given that a thread’s state may change in betwestimg its state and then acting upon that inféionathis code is
useful only in diagnostic scenarios.)

When a thread blocks or unblocks, the operatingeayperforms @ontext switchThis incurs an overhead of a few
microseconds.

Unblocking happens in one of four ways (the compaifgower button doesn't count!):

» by the blocking condition being satisfied
» by the operation timing out (if a timeout is sp&sd

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl.rights reserved. www.albahari.com/threading/ 19

» by being interrupted via Thread.Interrupt
» by being aborted via Thread.Abort

A thread is not deemed blocked if its executiopassed via the (deprecated) Suspend method.

Blocking Versus Spinning

Sometimes a thread must pause until a certain tonds met. Signaling and locking constructs aegithis efficiently
by blocking until a condition is satisfied. Howey#rere is a simpler alternative: a thread can avaondition by
spinningin a polling loop. For example:

while (!proceed);
or:

while (DateTime.Now < nextStartTime);

In general, this is very wasteful on processor tiasefar as the CLR and operating system are coedethe thread is
performing an important calculation, and so geltscated resources accordingly!

Sometimes a hybrid between blocking and spinningé:
while (!proceed) Thread.Sleep (19);

Although inelegant, this is (in general) far mofficeent than outright spinning. Problems can arib®ugh, due to
concurrency issues on theoceed flag. Proper use of locking and signaling avohs.t

Spinningvery brieflycan be effective when you expect a condition tedtesfied soon (perhaps within a few
microseconds) because it avoids the overhead tenthaof a context switch. The .NET Framework pdegi
special methods and classes to assist—see “SpirdmtiSpinWait”.

ThreadState

You can query a thread's execution status vighiteadState property. This returns a flags enum of type

ThreadState, which combines three “layers” of data in a bievfashion. Most values, however, are redundant,
unused, or deprecated. The following diagram shmves“layer”:

WaitSleepJoin

Abort

Thread Thread
Blocks Unblocks

A
Bi Abort
ResetAbort

Thread Thread

Y

Abort
Requested

| in
| theory
| only!

The following code strips @hreadState to one of the four most useful valueastarted, Running,
WaitSleepJoin, andStopped:

Stopped

public static ThreadState SimpleThreadState (ThreadState ts)
{
return ts & (ThreadState.Unstarted |
ThreadState.WaitSleepJoin |
ThreadState.Stopped) ;

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl.rights reserved. www.albahari.com/threading/ 20

TheThreadState property is useful for diagnostic purposes, biguitable for synchronization, because a thread'’s
state may change in between testihgeadState and acting on that information.

Locking

Exclusive locking is used to ensure that only dwedd can enter particular sections of code ahe. frhe two main
exclusive locking constructs ateck andMutex. Of the two, thélock construct is faster and more conveni@nt:ex,
though, has a niche in that its lock can span agi{iins in different processes on the computer.

In this section, we’ll start with theock construct and then move onMotex and semaphores (for nonexclusive
locking). Later, we’ll cover reader/writer locks.

From Framework 4.0, there is also theinLock struct for high-concurrency scenarios (see fieatisn).

Let’s start with the following class:

class ThreaduUnsafe

{
static int vall =1, val2 = 1;

static void Go()

{
if (_val2 != @) Console.WriteLine (_vall / _val2);
_val2 = o;
}
}

This class is not thread-safeGif was called by two threads simultaneously, it wcaddoossible to get a division-by-
zero error, becauseval2 could be set to zero in one thread right as theradhread was in between executing tfie
statement andonsole.WriteLine.

Here’s howlock can fix the problem:

class ThreadSafe

{
static readonly object _locker = new object();
static int _vall, _val2;

static void Go()

{
lock (_locker)

{
if (_val2 != @) Console.WriteLine (_vall / val2);
_val2 = o;
}
}
}

Only one thread can lock the synchronizing objecthis case, locker) at a time, and any contending threads are
blocked until the lock is released. If more thae ¢tiread contends the lock, they are queued oaaalyrqueue” and
granted the lock on a first-come, first-served éaicaveat is that nuances in the behavior of Wiusdand the CLR
mean that the fairness of the queue can sometimemlated). Exclusive locks are sometimes saiehnforceserialized
access to whatever’s protected by the lock, becans¢hread’s access cannot overlap with that oftem. In this case,
we're protecting the logic inside tlte method, as well as the fieldsall and_val2.

A thread blocked while awaiting a contended lock &ahreadState of waitSleepJoin. In Interrupt and Abort, we
describe how a blocked thread can be forcibly sgldavia another thread. This is a fairly heavy-dathnique that
might be used in ending a thread.

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl.rights reserved. www.albahari.com/threading/ 21

A Comparison of Locking Constructs

Construct Purpose Cross- Over head*
process?
lock (Monitor.Enter/ _ - 20ns
Monitor.Exit) Ensures just one thread can access a resourge
(or section of code) at a time

Mutex Yes 1000ns
SemaphoreSlim (introduced in - - 200ns
Framework 4.0) Ensures not more than a specified number of

concurrent threads can access a resource
Semaphore Yes 1000ns
ReaderWriterLockSlim - 40ns
(introduced in Framework 3.5)| Allows multiple readers to coexist with a single
ReaderWriterLock writer - 100ns

(effectively deprecated)

*Time taken to lock and unlock the construct onnetee same thread (assuming no blocking), as medsur
an Intel Core i7 860.

Monitor.Enter and Monitor.Exit

C#’s lock statement is in fact a syntactic shortcut for latoathe method#lonitor.Enter andMonitor.Exit, with a
try/finally block. Here's (a simplified version of) what's aally happening within theéo method of the preceding
example:

Monitor.Enter (_locker);
try

{
if (_val2 != @) Console.WriteLine (_vall / _val2);
_val2 = o;

¥
finally { Monitor.Exit (_locker); }

CallingMonitor.Exit without first callingMonitor.Enter on the same object throws an exception.

The lockTaken overloads

The code that we just demonstrated is exactly weaC# 1.0, 2.0, and 3.0 compilers produce in tating alock
statement.

There’s a subtle vulnerability in this code, howew@onsider the (unlikely) event of an exceptiombehrown within

the implementation dfonitor.Enter, or between the call teonitor.Enter and thetry block (due, perhaps, to
Abort being called on that thread—or @amtOfMemoryException being thrown). In such a scenario, the lock may or
may not be taken. If the lod& taken, it won't be released—because we’ll neveerethetry/finally block. This will
result in a leaked lock.

To avoid this danger, CLR 4.0’s designers addeddtewing overload taMonitor.Enter:

public static void Enter (object obj, ref bool lockTaken);
lockTaken is false after this method if (and only if) theter method throws an exception and the lock was rkatrta
Here’s the correct pattern of use (which is exalatiw C# 4.0 translateslack statement):

bool lockTaken = false;
try
{

Monitor.Enter (_locker, ref lockTaken);
// Do your stuff...

}
finally { if (lockTaken) Monitor.Exit (_locker); }

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl.rights reserved. www.albahari.com/threading/ 22

TryEnter

Monitor also provides @aryEnter method that allows a timeout to be specified,ezith milliseconds or as a
TimeSpan. The method then returisue if a lock was obtained, dralse if no lock was obtained because the method
timed out.TryEnter can also be called with no argument, which “teig”lock, timing out immediately if the lock
can’t be obtained right away.

As with theEnter method, it's overloaded in CLR 4.0 to accefibakTaken argument.

Choosing the Synchronization Object

Any object visible to each of the partaking threads be used as a synchronizing object, subjemédchard rule: it
must be a reference type. The synchronizing oligegpically private (because this helps to enchgtsithe locking
logic) and is typically an instance or static fielthe synchronizing object can double as the olifsqgbrotecting, as the
_list field does in the following example:

class ThreadSafe

{

List <string> _list = new List <string>();

void Test()

{
lock (_1list)

{
_list.Add ("Item 1");

A field dedicated for the purpose of locking (sw@sh 1ocker, in the example prior) allows precise control otrex
scope and granularity of the lock. The containibgeot (this)—or even its type—can also be used as a synclatoiz
object:

lock (this) { ... }
or:
lock (typeof (Widget)) { ... } // For protecting access to statics

The disadvantage of locking in this way is that'y@mot encapsulating the locking logic, so it bees harder to
prevent deadlocking and excessive blocking. A locla type may also seep through application dotmaimdaries
(within the same process).

You can also lock on local variables captured Ioytida expressions or anonymous methods.

Locking doesn't restrict access to the synchrogizibject itself in any way. In other words,ToString()
will not block because another thread has calleck (x); both threads must cadlbck (x) in order for
blocking to occur.

When to Lock

As a basic rule, you need to lock around accessiygwritable shared fieldEven in the simplest case—an assignment
operation on a single field—you must consider syogization. In the following class, neither thecrement nor the
Assign method is thread-safe:

class ThreaduUnsafe

{
static int _x;
static void Increment() { _x++; }
static void Assign() { x=123; }

}

Here are thread-safe versionsiatrement andAssign:

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl.rights reserved. www.albahari.com/threading/ 23

class ThreadSafe

{

static readonly object _locker = new object();
static int _x;

static void Increment() { lock (_locker) x++; }
static void Assign() { lock (_locker) _x = 123; }

}

In Nonblocking Synchronization, we explain how theed arises, and how the memory barriers angrtherlocked
class can provide alternatives to locking in th>ions.

Locking and Atomicity

If a group of variables are always read and writtéhin the same lock, you can say the variablesr@ad and written
atomically. Let's suppose fields andy are always read and assigned withiroak on objectlocker:

lock (locker) { if (x '=0) y /=x; }

One can say andy are accessed atomically, because the code blociothe divided or preempted by the actions of
another thread in such a way that it will chang® y andinvalidate its outcomeYou’ll never get a division-by-zero
error, providingk andy are always accessed within this same exclusive loc

The atomicity provided by a lock is violated if exception is thrown within dock block. For example,
consider the following:

decimal _savingsBalance, _checkBalance;
void Transfer (decimal amount)

lock (_locker)
{

_savingsBalance += amount;
_checkBalance -= amount + GetBankFee();

}
}
If an exception was thrown l8etBankFee(), the bank would lose money. In this case, we cautzd the
problem by callingsetBankFee earlier. A solution for more complex cases istplement “rollback” logic
within acatch or finally block.

Instructionatomicity is a different, although analogous cqatcan instruction is atomic if it executes indilly on the
underlying processor (see Nonblocking Synchrororgti

Nested Locking

A thread can repeatedly lock the same object iested (eentrany fashion:

lock (locker)
lock (locker)
lock (locker)

{
// Do something...

}
or:

Monitor.Enter (locker); Monitor.Enter (locker); Monitor.Enter (locker);
// Do something...
Monitor.Exit (locker); Monitor.Exit (locker); Monitor.Exit (locker);

In these scenarios, the object is unlocked onlynithe outermostock statement has exited—or a matching number of
Monitor.Exit statements have executed.

Nested locking is useful when one method callsfzrowithin a lock:

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl.rights reserved. www.albahari.com/threading/ 24

static readonly object _locker = new object();

static void Main()

{
lock (_locker)
{
AnotherMethod() ;
// We still have the lock - because locks are reentrant.
}
}
static void AnotherMethod()
{
lock (_locker) { Console.WriteLine ("Another method"); }
¥

A thread can block on only the first (outermostko

Deadlocks

A deadlock happens when two threads each wait fesaurce held by the other, so neither can prodeesleasiest
way to illustrate this is with two locks:

object lockerl = new object();
object locker2 = new object();

new Thread (() => {
lock (lockerl)
{
Thread.Sleep (1000);
lock (locker2); // Deadlock

}
}).Start();
lock (locker2)

Thread.Sleep (1000);
lock (lockerl); // Deadlock

}
More elaborate deadlocking chains can be creattdtiaiee or more threads.

The CLR, in a standard hosting environment, isliketSQL Server and does not automatically detadt a
resolve deadlocks by terminating one of the offesid& threading deadlock causes participating tise¢a
block indefinitely, unless you've specified a loaggitimeout. (Under the SQL CLR integration hosthuwer,
deadlocksare automatically detected and a [catchable] excepsighrown on one of the threads.)

Deadlocking is one of the hardest problems in riiukiading—especially when there are many interedlabjects.
Fundamentally, the hard problem is that you cam'$ure what locks yowaller has taken out.

So, you might innocently lock private fietdwithin your clasx, unaware that your caller (or caller's caller) Amsady
locked fieldb within classy. Meanwhile, another thread is doing the reversesatang a deadlock. Ironically, the
problem is exacerbated by (good) object-orientegigihepatterns, because such patterns create eatisctihat are not
determined until runtime.

The popular advice, “lock objects in a consistadieo to avoid deadlocks,” although helpful in onitial example, is
hard to apply to the scenario just described. Aebatrategy is to be wary of locking around cgllimethods in objects
that may have references back to your own objdsb,Aonsider whether you really need to lock adocailing
methods in other classes (often you do—as we’llsee—but sometimes there are other options).iRglgnore on
declarative and data parallelism, immutable typesd, nonblocking synchronization constructs, casdeghe need for
locking.

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl.rights reserved. www.albahari.com/threading/ 25

Here is an alternative way to perceive the problMhen you call out to other code while holding eklathe
encapsulation of that lock subtlaks This is not a fault in the CLR or .NET Framewadblgt a fundamental
limitation of locking in general. The problems otking are being addressed in various researcleqsyj
including Software Transactional Memary

Another deadlocking scenario arises when callihgpatcher. Invoke (in a WPF application) atontrol.Invoke (in
a Windows Forms application) while in possession tifck. If the Ul happens to be running anothethoe that's
waiting on the same lock, a deadlock will happghtrihere. This can often be fixed simply by cglieginInvoke
instead ofinvoke. Alternatively, you can release your lock befoadling Invoke, although this won't work if your
caller took out the lock. We explaiftnvoke andBeginInvoke in Rich Client Applications and Thread Affinity.

Performance

Locking is fast: you can expect to acquire anda®dea lock in as little as 20 nanoseconds on a-2d6omputer if the
lock is uncontended. If it is contended, the consatjal context switch moves the overhead closéngamicrosecond
region, although it may be longer before the thrieaattually rescheduled. You can avoid the cost adntext switch
with theSpinLock class—if you're locking very briefly (see finalc®n).

Locking can degrade concurrency if locks are hetddo long. This can also increase the chanceadidbck.

Mutex

A Mutex is like a C#lock, but it can work across multiple processes. IrotordsMutex can becomputer-wideas
well asapplication-wide

Acquiring and releasing an uncontendedex takes a few microseconds—about 50 times slower @aiack.

With aMutex class, you call th#aitOne method to lock andeleaseMutex to unlock. Closing or disposingvatex
automatically releases it. Just as with tbek statement, slutex can be released only from the same thread that
obtained it.

A common use for a cross-proc@ssex is to ensure that only one instance of a programran at a time. Here's how
it's done:

class OneAtATimePlease
{
static void Main()
{
// Naming a Mutex makes it available computer-wide. Use a name that's
// unique to your company and application (e.g., include your URL).

using (var mutex = new Mutex (false, "oreilly.com OneAtATimeDemo"))
{

// Wait a few seconds if contended, in case another instance

// of the program is still in the process of shutting down.

if (!mutex.WaitOne (TimeSpan.FromSeconds (3), false))
{ Console.WriteLine ("Another instance of the app is running. Bye!");
return;
}
RunProgram();
}
}

static void RunProgram()
{
Console.WriteLine ("Running. Press Enter to exit");
Console.ReadLine();
}
3

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl.rights reserved. www.albahari.com/threading/ 26

If running under Terminal Services, a computer-wideex is ordinarily visible only to applications in the
same terminal server session. To make it visiblteerminal server sessions, prefix its name v@tbbal\

Semaphore

A semaphore is like a nightclub: it has a certapacity, enforced by a bouncer. Once it’s fullmnore people can
enter, and a queue builds up outside. Then, fdr pacson that leaves, one person enters from e dfethe queue.
The constructor requires a minimum of two argumethiss number of places currently available in tighttlub and the
club’s total capacity.

A semaphore with a capacity of one is similar ttuaex or lock, except that the semaphore has no “owner"—it’s
thread-agnosticAny thread can callelease on aSemaphore, whereas wittMutex andlock, only the thread that
obtained the lock can release it.

There are two functionally similar versions of thiass:Semaphore andSemaphoreSlim. The latter was
introduced in Framework 4.0 and has been optimizedeet the low-latency demands of parallel
programming. It's also useful in traditional muitieading because it lets you specify a cancellat&an when
waiting. It cannot, however, be used for interpsscsignaling.

Semaphore incurs about 1 microsecond in calliigitOne orRelease; SemaphoreSlim incurs about a
quarter of that.

Semaphores can be useful in limiting concurrencyev@nting too many threads from executing a pagicpiece of
code at once. In the following example, five threag to enter a nightclub that allows only thrieeeids in at once:

class TheClub // No door lists!
{

static SemaphoreSlim _sem = new SemaphoreSlim (3); // Capacity of 3

static void Main()
{
for (int i = 1; i <= 5; i++) new Thread (Enter).Start (i);

}

static void Enter (object id)

{
Console.WriteLine (id +
_sem.Wait();
Console.WriteLine (id + " is in!"); // Only three threads
Thread.Sleep (1000 * (int) id); // can be here at
Console.WriteLine (id + " is leaving"); // a time.
_sem.Release();

¥

¥

wants to enter");

wants to enter
is in!

wants to enter
is in!

wants to enter
is in!

wants to enter
wants to enter
is leaving

is in!

is leaving

is in!

UUN PP UPRWWNNEREPR

If the Sleep statement was instead performing intensive diSk ttheSemaphore would improve overall performance
by limiting excessive concurrent hard-drive activit

A Semaphore, if named, can span processes in the same wapasa.

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl.rights reserved. www.albahari.com/threading/ 27

Thread Safety

A program or method is thread-safe if it has naetedminacy in the face of any multithreading scendrhread safety
is achieved primarily with locking and by reducithg possibilities for thread interaction.

General-purpose types are rarely thread-safe ine¢hérety, for the following reasons:

» The development burden in full thread safety casipeificant, particularly if a type has many figltkach field is a
potential for interaction in an arbitrarily multisaded context).

e Thread safety can entail a performance cost (payabpart, whether or not the type is actuallydusg multiple
threads).

» A thread-safe type does not necessarily make thgram using it thread-safe, and often the work lvea in the
latter makes the former redundant.

Thread safety is hence usually implemented justrevlieneeds to be, in order to handle a specifittithteading
scenario.

There are, however, a few ways to “cheat” and hange and complex classes run safely in a multitheel
environment. One is to sacrifice granularity by pping large sections of code—even access to areatiject—within
a single exclusive lock, enforcing serialized asasa high level. This tactic is, in fact, essarfiyou want to use
thread-unsafe third-party code (or most Framewgplks, for that matter) in a multithreaded cont&kie trick is simply
to use the same exclusive lock to protect acceal pwoperties, methods, and fields on the thremaskfe object. The
solution works well if the object’'s methods all exte quickly (otherwise, there will be a lot of bking).

Primitive types aside, few .NET Framework typesewlinstantiated, are thread-safe for anything rttzaia
concurrent read-only access. The onus is on theldiger to superimpose thread safety, typically with
exclusive locks. (The collections fiystem.Collections.Concurrent are an exception.)

Another way to cheat is to minimize thread inteicacby minimizing shared data. This is an excellgpproach and is
used implicitly in “stateless” middle-tier appligat and web page servers. Since multiple clientests can arrive
simultaneously, the server methods they call meshtead-safe. A stateless design (popular fooreasf scalability)
intrinsically limits the possibility of interactigrsince classes do not persist data between regldstad interaction is
then limited just to the static fields one may cé®to create, for such purposes as caching commsely data in
memory and in providing infrastructure servicestsas authentication and auditing.

The final approach in implementing thread safetypiase an automatic locking regime. The .NET Fraork does
exactly this, if you subclas®ntextBoundObject and apply theynchronization attribute to the class. Whenever a
method or property on such an object is then caladbbject-wide lock is automatically taken foe thihole execution

of the method or property. Although this reducesttiread-safety burden, it creates problems a@fits: deadlocks that
would not otherwise occur, impoverished concurreaecyl unintended reentrancy. For these reasonsjahlatking is
generally a better option—at least until a lesspdistic automatic locking regime becomes available.

Thread Safety and .NET Framework Types

Locking can be used to convert thread-unsafe autdethiread-safe code. A good application of thihés.NET
Framework: nearly all of its nonprimitive types @@ thread-safe (for anything more than read-acless) when
instantiated, and yet they can be used in multitheel code if all access to any given object isquted via a lock.
Here’s an example, where two threads simultaneadidlyan item to the samést collection, then enumerate the list:

class ThreadSafe

{

static List <string> _list = new List <string>();

static void Main()

{
new Thread (AddItem).Start();
new Thread (AddItem).Start();

}

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl.rights reserved. www.albahari.com/threading/ 28

static void AddItem()

{
lock (_list) list.Add ("Item " + list.Count);

string[] items;
lock (_list) items = list.ToArray();
foreach (string s in items) Console.WriteLine (s);

}
}

In this case, we're locking on théist object itself. If we had two interrelated listse would have to choose a
common object upon which to lock (we could nomir@te of the lists, or better: use an independefa)fi

Enumerating .NET collections is also thread-ungatbe sense that an exception is thrown if theidisnodified during
enumeration. Rather than locking for the duratibarmumeration, in this example we first copy theis to an array.
This avoids holding the lock excessively if whatneeloing during enumeration is potentially timeasaming.
(Another solution is to use a reader/writer lock.)

Locking around thread-safe objects

Sometimes you also need to lock around accessiagdksafe objects. To illustrate, imagine thatfiremework’sList
class was, indeed, thread-safe, and we want taade&m to a list:

if (! _list.Contains (newItem)) list.Add (newItem);

Whether or not the list was thread-safe, this stat# is certainly not! The wholef statement would have to be
wrapped in a lock in order to prevent preemptiobetween testing for containership and adding #we item. This
same lock would then need to be used everywhemaadkfied that list. For instance, the followingtstaent would
also need to be wrapped in the identical lock:

_list.Clear();

to ensure that it did not preempt the former statgtmn other words, we would have to lock exaeywith our thread-
unsafe collection classes (making thet class’s hypothetical thread safety redundant).

Locking around accessing a collection can causesskee blocking in highly concurrent environmeiiis.this
end, Framework 4.0 provides a thread-safe queaek,stnd dictionary (see “Concurrent Collections”).

Static methods

Wrapping access to an object around a custom lacksaonly if all concurrent threads are aware of-é-ase—the
lock. This may not be the case if the object isaljidscoped. The worst case is with static membreasgublic type. For
instance, imagine if the static property onbha@éeTime struct,DateTime.Now, was not thread-safe, and that two
concurrent calls could result in garbled outpuaexception. The only way to remedy this with exaé&locking might
be to lock the type itselftock (typeof (DateTime))—before callingpateTime.Now. This would work only if all
programmers agreed to do this (which is unlikaigrthermore, locking a type creates problems afuts.

For this reason, static members onithéeTime struct have been carefully programmed to be thesdel This is a
common pattern throughout the .NET Framewsthtic members are thread-safe; instance membersiat. Following
this pattern also makes sense when writing typepublic consumption, so as not to create impossinlead-safety
conundrums. In other words, by making static meshtbdead-safe, you're programming so as n@rézludethread
safety for consumers of that type.

Thread safety in static methods is something tbatrpust explicitly code: it doesn’t happen autooadly by
virtue of the method being static!

Read-only thread safety

Making types thread-safe for concurrent read-onbeas (where possible) is advantageous becausaitsthat
consumers can avoid excessive locking. Many ofMtel Framework types follow this principle: collewts, for
instance, are thread-safe for concurrent readers.

Following this principle yourself is simple: if yalocument a type as being thread-safe for conduread-only access,
don'’t write to fields within methods that a consum@uld expect to be read-only (or lock around daon). For

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl.rights reserved. www.albahari.com/threading/ 29

instance, in implementing®Array () method in a collection, you might start by compagthe collection’s internal
structure. However, this would make it thread-uaedaf consumers that expected this to be read-only.

Read-only thread safety is one of the reasonsthamnerators are separate from “enumerables”; tveatts can
simultaneously enumerate over a collection becaash gets a separate enumerator object.

In the absence of documentation, it pays to baaasitn assuming whether a method is read-onhainine. A
good example is theandom class: when you callandom.Next (), its internal implementation requires that i
update private seed values. Therefore, you mustreivck around using thandom class, or maintain a
separate instance per thread.

Thread Safety in Application Servers

Application servers need to be multithreaded tadl@simultaneous client requests. WCF, ASP.NET ,\wieth Services
applications are implicitly multithreaded; the sahmdds true for Remoting server applications tres & network
channel such as TCP or HTTP. This means that whigimgvcode on the server side, you must considezad safety if
there’s any possibility of interaction among theetids processing client requests. Fortunately, aydssibility is rare;
a typical server class is either stateless (ndgjebr has an activation model that creates a atpabject instance for
each client or each request. Interaction usualgearonly through static fields, sometimes useaé@hing in memory
parts of a database to improve performance.

For example, suppose you haveearieveUser method that queries a database:

// User is a custom class with fields for user data
internal User RetrieveUser (int id) { ... }

If this method was called frequently, you could e performance by caching the results in a stati¢ionary.
Here’s a solution that takes thread safety int@ant

static class UserCache

{
static Dictionary <int, User> _users = new Dictionary <int, User>();
internal static User GetUser (int id)
{
User u = null;
lock (_users)
if (_users.TryGetValue (id, out u))
return u;
u = RetrieveUser (id); // Method to retrieve from database;
lock (_users) _users [id] = u;
return u;
¥
¥

We must, at a minimum, lock around reading and tipdahe dictionary to ensure thread safety. Is thiample, we
choose a practical compromise between simplicit/@erformance in locking. Our design actually ozeat very small
potential for inefficiency: if two threads simulewously called this method with the same previousitetrievedid, the
RetrieveUser method would be called twice—and the dictionaryldde updated unnecessarily. Locking once
across the whole method would prevent this, butldvoreate a worse inefficiency: the entire cacheldide locked up
for the duration of callingetrieveUser, during which time other threads would be blockecktrievingany user.

Rich Client Applications and Thread Affinity

Both the Windows Presentation Foundation (WPF)\imbdows Forms libraries follow models based ondlre
affinity. Although each has a separate implemematihey are both very similar in how they function

The objects that make up a rich client are basidapity onDependencyObject in the case of WPF, @ontrol in
the case of Windows Forms. These objects ianemad affinity which means that only the thread that instargittiem
can subsequently access their members. Violatisgttuses either unpredictable behavior, or anpgiareto be
thrown.

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl.rights reserved. www.albahari.com/threading/ 30

On the positive side, this means you don't nedddk around accessing a Ul object. On the negaiide, if you want
to call a member on object X created on anotheatthy, you must marshal the request to thread Y. &m do this
explicitly as follows:

* In WPF, callinvoke orBeginInvoke on the element’®ispatcher object.
* In Windows Forms, calinvoke or BeginInvoke on the control.

Invoke andBeginInvoke both accept a delegate, which references the methahe target control that you want to
run. Invoke workssynchronouslythe caller blocks until the marshal is compl@tezinInvoke worksasynchronousty
the caller returns immediately and the marshalgdest is queued up (using the same message quumtidles
keyboard, mouse, and timer events).

Assuming we have a window that contains a textdaed txtMessage, whose content we wish a worker thread to
update, here's an example for WPF:

public partial class MyWindow : Window
{
public MyWindow()
{
InitializeComponent();
new Thread (Work).Start();

}

void Work()

{
Thread.Sleep (5000); // Simulate time-consuming task

UpdateMessage ("The answer");

}

void UpdateMessage (string message)

{

Action action = () => txtMessage.Text = message;
Dispatcher.Invoke (action);
}
}

The code is similar for Windows Forms, except thatcall the Eorm’s) Invoke method instead:

void UpdateMessage (string message)

{

Action action = () => txtMessage.Text = message;
this.Invoke (action);

}

The Framework provides two constructs to simplifig forocess:
* BackgroundWorker

* Task continuations

Worker threads versus Ul threads

It's helpful to think of a rich client applicaticas having two distinct categories of threads: Wealds and worker
threads. Ul threads instantiate (and subsequeotiy™) Ul elements; worker threads do not. Workeeé#ds typically
execute long-running tasks such as fetching data.

Most rich client applications have a single Ul #dgwhich is also the main application thread) padodically spawn
worker threads—either directly or usiegckgroundWorker. These workers then marshal back to the main tgathin
order to update controls or report on progress.

So, when would an application have multiple Ul #ug? The main scenario is when you have an agplicaith
multiple top-level windows, often calledSingle Document Interfag&DI) application, such as Microsoft Word. Each
SDI window typically shows itself as a separateplagation” on the taskbar and is mostly isolatedhdtionally, from
other SDI windows. By giving each such window itgmoUl thread, the application can be made moreorsipe.

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl.rights reserved. www.albahari.com/threading/ 31

Immutable Objects

An immutable object is one whose state cannot teeeml—externally or internally. The fields in annmtable object
are typically declared read-only and are fullyialized during construction.

Immutability is a hallmark of functional programmgir-where instead ahutatingan object, you create a new object
with different properties. LINQ follows this paragin. Immutability is also valuable in multithreadimgthat it avoids
the problem of shared writable state—by eliminaagminimizing) the writable.

One pattern is to use immutable objects to encafesal group of related fields, to minimize lockations. To take a
very simple example, suppose we had two field®baws:

int _percentComplete;
string _statusMessage;

and we wanted to read/write them atomically. Rathan locking around these fields, we could defireefollowing
immutable class:

class ProgressStatus // Represents progress of some activity

{

public readonly int PercentComplete;
public readonly string StatusMessage;

// This class might have many more fields...

public ProgressStatus (int percentComplete, string statusMessage)

{

PercentComplete = percentComplete;
StatusMessage = statusMessage;

}
¥

Then we could define a single field of that typleng with a locking object:

readonly object _statusLocker = new object();
ProgressStatus _status;

We can now read/write values of that type withaalting a lock for more than a single assignment:

var status = new ProgressStatus (50, "Working on it");

// Imagine we were assigning many more fields...

// ...

lock (_statusLocker) _status = status; // Very brief lock

To read the object, we first obtain a copy of thgot (within a lock). Then we can read its valuéthout needing to
hold on to the lock:

ProgressStatus statusCpy;

lock (_locker ProgressStatus) statusCopy = _status; // Again, a brief lock
int pc = statusCopy.PercentComplete;

string msg = statusCopy.StatusMessage;

Technically, the last two lines of code are threatk by virtue of the preceding lock performingmaplicit
memory barrier (see part 4).

Note that this lock-free approach prevents incaesisy within a group of related fields. But it doégrevent data from
changing while you subsequently act on it—for tlgmy usually need a lock. In Part 5, we’'ll see mexamples of
using immutability to simplify multithreading—inddiing PLINQ.

It's also possible to safely assign a newgressStatus object based on its preceding value (e.g., it's
possible to “increment” theercentComplete value)—without locking over more than one linecotle. In
fact, we can do this without using a single lotkptigh the use of explicit memory barriers,
Interlocked.CompareExchange, and spin-waits. This is an advanced techniquehwvie describe later (se
“SpinLock and SpinWait”).

A1

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl.rights reserved. www.albahari.com/threading/ 32

Signaling with Event Wait Handles

Event wait handles are used fgnaling Signaling is when one thread waits until it reesinotification from another.
Event wait handles are the simplest of the siggadionstructs, and they are unrelated to C# evéhtsy come in three
flavors: AutoResetEvent, ManualResetEvent, and (from Framework 4.@ountdownEvent. The former two are
based on the commaventWaitHandle class, where they derive all their functionality.

A Comparison of Signaling Constructs
Construct Purpose Cross- Over head*
process?
AutoResetEvent Allows a thread to unblock once when it Yes 1000ns
receives a signal from another
ManualResetEvent) o Yes 1000ns
- Allows a thread to unblock indefinitely whe
ManualResetEventSlim it receives a signal from another (until reset) - 40ns
(introduced in Framework 4.0)
CountdownEvent (introduced in | Allows a thread to unblock when it receives|a- 40ns
Framework 4.0) predetermined number of signals
Barrier (introduced in Implements a thread execution barrier - 80ns
Framework 4.0)
Wait andPulse Allows a thread to block until a custom - 120ns for a
condition is met Pulse
*Time taken to signal and wait on the constructeoon the same thread (assuming no blocking), asunea
on an Intel Core i7 860.

AutoResetEvent

An AutoResetEvent is like a ticket turnstile: inserting a ticketdegxactly one person through. The “auto” in the€km
name refers to the fact that an open turnstileraatizally closes or “resets” after someone stepsugh. A thread
waits, or blocks, at the turnstile by calliigitone (wait at this “one” turnstile until it opens), aadicket is inserted by
calling theset method. If a number of threads dedlitone, a queue builds up behind the turnstile. (As wottks, the
fairness of the queue can sometimes be violatedadogances in the operating system). A ticketaane from any
thread; in other words, any (unblocked) thread aitbess to theutoResetEvent object can calfet on it to release
one blocked thread.

You can create akutoResetEvent in two ways. The first is via its constructor:
var auto = new AutoResetEvent (false);

(Passingtrue into the constructor is equivalent to immediatedjling Set upon it.) The second way to create an
AutoResetEvent is as follows:

var auto = new EventWaitHandle (false, EventResetMode.AutoReset);
In the following example, a thread is started whiokeis simply to wait until signaled by anotheread:

class BasicWaitHandle

{

static EventWaitHandle _waitHandle = new AutoResetEvent (false);
static void Main()

new Thread (Waiter).Start();
Thread.Sleep (1000); // Pause for a second...
_waitHandle.Set(); // Wake up the Waiter.

}

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl.rights reserved. www.albahari.com/threading/ 33

static void Waiter()
{
Console.WriteLine ("Waiting...");
_waitHandle.WaitOne(); // Wait for notification
Console.WriteLine ("Notified");
¥
}

// Output:
Waiting... (pause) Notified.

Sleep (1000)
wh.Set
— time—
Thread \J
— wh.WaitOne —_—
"Waiting" "Notified"
BLOCKED

If Set is called when no thread is waiting, the handdgsbpen for as long as it takes until some thoadldWaitOne.
This behavior helps avoid a race between a threadihg for the turnstile, and a thread insertitiglet (“Oops,
inserted the ticket a microsecond too soon, bad lew you'll have to wait indefinitely!”). HowevercallingSet
repeatedly on a turnstile at which no one is wgitloesn't allow a whole party through when theyvarronly the next
single person is let through and the extra ticke¢s‘wasted.”

CallingReset on anAutoResetEvent closes the turnstile (should it be open) withoatting or blocking.

WaitOne accepts an optional timeout parameter, returifiirige if the wait ended because of a timeout rather than
obtaining the signal.

Callingwaitone with a timeout 0B tests whether a wait handle is “open,” withoutcliag the caller. Bear in
mind, though, that doing this resets thecoResetEvent if it's open.

Disposing Wait Handles

Once you've finished with a wait handle, you calhit®Close method to release the operating system
resource. Alternatively, you can simply drop aferences to the wait handle and allow the garbafjeator to
do the job for you sometime later (wait handleslament the disposal pattern whereby the finalizdisc
Close). This is one of the few scenarios where relyinghis backup is (arguably) acceptable, because wai
handles have a light OS burden (asynchronous dekegaly on exactly this mechanism to release their
IAsyncResult’s wait handle).

Wait handles are released automatically when alicapipn domain unloads.

Two-way signaling

Let’'s say we want the main thread to signal a wotleead three times in a row. If the main threiagpy callsSet on
a wait handle several times in rapid successienséitond or third signal may get lost, since thekeromay take time
to process each signal.

The solution is for the main thread to wait urttié tworker’s ready before signaling it. This cardbee with another
AutoResetEvent, as follows:

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl.rights reserved. www.albahari.com/threading/ 34

class TwolWaySignaling

{
static EventWaitHandle _ready = new AutoResetEvent (false);
static EventWaitHandle _go = new AutoResetEvent (false);
static readonly object _locker = new object();
static string _message;

static void Main()

{
new Thread (Work).Start();

_ready.WaitOne(); // First wait until worker is ready
lock (_locker) _message = "ooo";
_go.set(); // Tell worker to go

_ready.WaitOne();
lock (_locker) _message = "ahhh"; // Give the worker another message

_go.Set();

_ready.WaitOne();
lock (_locker) _message
_go.Set();

}

static void Work()
{

while (true)
{
_ready.Set(); // Indicate that we're ready
_go.WaitOne(); // Wait to be kicked off...
lock (_locker)
{
if (_message == null) return; // Gracefully exit
Console.WriteLine (_message);
¥
¥
¥
¥

// Output:
000
ahhh

null; // Signal the worker to exit

Main Thread

=) ready.WaitOne ready.WaitOne ready.WaitOne [—
= A message="000" message="aah"

go.Set A go.Set A

new

Thread o) s \) Y
. Set _ |
goWaitOne readySet T goWaitone ready.Set
¢ "ooo " - ahhh "

Here, we're using a null message to indicate tiattorker should end. With threads that run indefiy, it's important
to have an exit strategy!

Producer/consumer queue
A producer/consumer queue is a common requiremehtéading. Here’s how it works:
» A queue is set up to describe work items—or datmuphich work is performed.
* When a task needs executing, it's enqueued, altpttia caller to get on with other things.
» One or more worker threads plug away in the baakugplppicking off and executing queued items.

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl.rights reserved. www.albahari.com/threading/ 35

The advantage of this model is that you have peezismtrol over how many worker threads executeagoThis can
allow you to limit consumption of not only CPU tigraut other resources as well. If the tasks perfiotensive disk
I/0, for instance, you might have just one workeead to avoid starving the operating system ahdrapplications.
Another type of application may have 20. You caoalynamically add and remove workers throughcaitiieue’s
life. The CLR’s thread pool itself is a kind of jgicer/consumer queue.

A producer/consumer queue typically holds itemdath upon which (the same) task is performed. kamele, the
items of data may be filenames, and the task nlight encrypt those files.

In the example below, we use a singleoResetEvent to signal a worker, which waits when it runs ofitasks (in
other words, when the queue is empty). We end thrkav by enqueing a null task:

using System;
using System.Threading;
using System.Collections.Generic;

class ProducerConsumerQueue : IDisposable

{
EventWaitHandle _wh = new AutoResetEvent (false);
Thread _worker;
readonly object _locker = new object();
Queue<string> _tasks = new Queue<string>();

public ProducerConsumerQueue()

{
_worker = new Thread (Work);
_worker.Start();
¥
public void EnqueueTask (string task)
{
lock (_locker) _tasks.Enqueue (task);
_wh.Set();
}
public void Dispose()
{
EnqueueTask (null); // Signal the consumer to exit.
_worker.Join(); // Wait for the consumer's thread to finish.
_wh.Close(); // Release any OS resources.
¥
void Work()
{
while (true)
{
string task = null;
lock (_locker)
if (_tasks.Count > 9)
{
task = tasks.Dequeue();
if (task == null) return;
¥
if (task != null)
{
Console.WriteLine ("Performing task: " + task);
Thread.Sleep (1000); // simulate work...
}
else
_wh.WaitOne(); // No more tasks - wait for a signal
¥
¥

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl.rights reserved. www.albahari.com/threading/ 36

To ensure thread safety, we used a lock to pratstss to th@ueue<string> collection. We also explicitly closed the
wait handle in oubispose method, since we could potentially create andrdgshany instances of this class within
the life of the application.

Here's a main method to test the queue:

static void Main()

{
using (ProducerConsumerQueue q = new ProducerConsumerQueue())
{
g.EnqueueTask ("Hello");
for (int i = @; i < 10; i++) g.EnqueueTask ("Say " + i);
g.EnqueueTask ("Goodbye!");
}

// Exiting the using statement calls q's Dispose method, which
// enqueues a null task and waits until the consumer finishes.

}

Performing task: Hello
Performing task: Say 1
Performing task: Say 2
Performing task: Say 3

Performing task: Say 9
Goodbye!

Framework 4.0 provides a new class callédckingCollection<T> that implements the functionality of a
producer/consumer queue (see “Concurrent Collegtjon

Our manually written producer/consumer queue isw&iuable—not only to illustrateutoResetEvent and
thread safety, but also as a basis for more sopdistl structures. For instance, if we wantdaanded
blocking queudlimiting the number of enqueued tasks) and alaoted to support cancellation (and removg|)
of enqueued work items, our code would provideaekent starting point. We'll take the producerisame
gueue example further in our discussion of Wait Bntse.

ManualResetEvent

A ManualResetEvent functions like an ordinary gate. Callisgt opens the gate, allowirany number of threads
callingWaitOne to be let through. Callingeset closes the gate. Threads that @alltOne on a closed gate will block;
when the gate is next opened, they will be releafleait once. Apart from these differenceslaaualResetEvent
functions like amutoResetEvent.

As with AutoResetEvent, you can constructiéanualResetEvent in two ways:

var manuall = new ManualResetEvent (false);
var manual2 = new EventWaitHandle (false, EventResetMode.ManualReset);

From Framework 4.0, there's another versionasfualResetEvent calledManualResetEventSlim. The
latter is optimized for short waiting times—withetability to opt into spinning for a set numbeitefations. It
also has a more efficient managed implementatiohadiows await to be canceled via a
CancellationToken. It cannot, however, be used for interprocessadigg. ManualResetEventSlim
doesn'’t subclassaitHandle; however, it exposesk&aitHandle property that returnsiéaitHandle-based
object when called (with the performance profileadfaditional wait handle).

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl.rights reserved. www.albahari.com/threading/ 37

Signaling Constructs and Performance

Waiting or signaling anutoResetEvent orManualResetEvent takes about one microsecond (assuming no
blocking).

ManualResetEventSlim andCountdownEvent can be up to 50 times faster in short-wait scesabecause
of their nonreliance on the operating system adétjous use of spinning constructs.

In most scenarios, however, the overhead of theatiing classes themselves doesn't create a batitenad so
is rarely a consideration. An exception is withHtyjgconcurrent code, which we’ll discuss in Part 5.

A ManualResetEvent is useful in allowing one thread to unblock matiyen threads. The reverse scenario is covered
by CountdownEvent.

CountdownEvent

CountdownEvent lets you wait on more than one thread. The ckasgWw to Framework 4.0 and has an efficient fully
managed implementation.

If you're running on an earlier version of the .NEflamework, all is not lost! Later on, we show howvrite a
CountdownEvent using Wait and Pulse.

To useCountdownEvent, instantiate the class with the number of threadsounts” that you want to wait on:

var countdown = new CountdownEvent (3); // Initialize with "count" of 3.

Calling Signal decrements the “count”; callingait blocks until the count goes down to zero. For eplam

static CountdownEvent countdown = new CountdownEvent (3);

static void Main()

{
new Thread (SaySomething).Start ("I am thread 1");
new Thread (SaySomething).Start ("I am thread 2");
new Thread (SaySomething).Start ("I am thread 3");

_countdown.Wait(); // Blocks until Signal has been called 3 times

Console.WriteLine ("All threads have finished speaking!™);

}
static void SaySomething (object thing)

Thread.Sleep (1000);
Console.WriteLine (thing);
_countdown.Signal();

}

Problems for whicltountdownEvent is effective can sometimes be solved more easilyguthestructured
parallelismconstructs that we’ll cover in Part 5 (PLINQ ahdRkarallel class).

You can reincrement@untdownEvent’s count by callingpdddCount. However, if it has already reached zero, this
throws an exception: you can’t “unsignaltauntdownEvent by callingAddCount. To avoid the possibility of an
exception being thrown, you can instead TallAddCount, which returnsralse if the countdown is zero.

To unsignal a countdown event, cedlset: this both unsignals the construct and resetsoitsit to the original value.

Like ManualResetEventSlim, CountdownEvent exposes @aitHandle property for scenarios where some other
class or method expects an object basegadnHandle.

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl.rights reserved. www.albahari.com/threading/ 38

Creating a Cross-Process EventWaitHandle

EventWaitHandle's constructor allows a “named¥entWaitHandle to be created, capable of operating across
multiple processes. The name is simply a strind,ibcan be any value that doesn’t unintentionedwflict with
someone else’s! If the name is already in use ercéimputer, you get a reference to the same urndgrly
EventWaitHandle; otherwise, the operating system creates a newttgre’s an example:

EventWaitHandle wh = new EventWaitHandle (false, EventResetMode.AutoReset,
"MyCompany .MyApp . SomeName") ;

If two applications each ran this code, they wduddable to signal each other: the wait handle waudk across all
threads in both processes.

Wait Handles and the Thread Pool

If your application has lots of threads that sperubt of their time blocked on a wait handle, yon reduce the
resource burden by callinthreadPool.RegisterWaitForSingleObject. This method accepts a delegate that is
executed when a wait handle is signaled. Whilewggting, it doesn’t tie up a thread:

static ManualResetEvent starter = new ManualResetEvent (false);

public static void Main()
{
RegisteredWaitHandle reg = ThreadPool.RegisteriWaitForSingleObject
(_starter, Go, "Some Data", -1, true);
Thread.Sleep (5000);
Console.WriteLine ("Signaling worker...");
_starter.Set();
Console.ReadLine();

reg.Unregister (_starter); // Clean up when we’re done.
}
public static void Go (object data, bool timedOut)
{
Console.WriteLine ("Started - " + data);
// Perform task...
}
// Output:

(5 second delay)
Signaling worker...
Started - Some Data

When the wait handle is signaled (or a timeoutssaj, the delegate runs on a pooled thread.

In addition to the wait handle and delegategisteriWaitForSingleObject accepts a “black box” object that it
passes to your delegate method (ratherAikeameterizedThreadStart), as well as a timeout in milliseconds (-1
meaning no timeout) and a boolean flag indicatimgtier the request is one-off rather than recurring

RegisterWaitForSingleObject is particularly valuable in an application serttat must handle many concurrent
requests. Suppose you need to block @armialResetEvent and simply calWaitOne:

void AppServerMethod()

_wh.WaitOne();
// ... continue execution

}

If 100 clients called this method, 100 server tieeaould be tied up for the duration of the bloekageplacing
_wh.WaitOne with RegisterWaitForSingleObject allows the method to return immediately, wastioghreads:

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl.rights reserved. www.albahari.com/threading/ 39

void AppServerMethod

{
RegisteredWaitHandle reg = ThreadPool.RegisterWaitForSingleObject

(_wh, Resume, null, -1, true);

}...

static void Resume (object data, bool timedOut)
{

// ... continue execution
¥

The data object passedrResume allows continuance of any transient data.

WaitAny, WaitAll, and SignalAndWait

In addition to theset, WaitOne, andrReset methods, there are static methods onthiectHandle class to crack more
complex synchronization nuts. TheitAny, WaitAll, andSignalAndWait methods perform atomic signaling and
waiting operations on multiple handles. The waitdlas can be of differing types (includingtex andSemphore,
since these also derive from the abstiadttHandle class)ManualResetEventSlim andCountdownEvent can also
partake in these methods via thedritHand1e properties.

WaitAll andSignalAndWait have a weird connection to the legacy COM architec these methods requirg
that the caller be in a multithreaded apartmest,miodel least suitable for interoperability. Themthread of
a WPF or Windows application, for example, is ueablinteract with the clipboard in this mode. We’l
discuss alternatives shortly.

WaitHandle.WaitAny waits for any one of an array of wait handlesi tHandle.WaitAll waits on all of the given
handles, atomically. This means that if you waitwo AutoResetEvents:

* WaitAny will never end up “latching” both events.
* WaitAll will never end up “latching” only one event.

SignalAndwWait callsSet on oneWaitHandle, and then callgaitOne on anotheWaitHandle. The atomicity
guarantee is that after signaling the first handill jump to the head of the queue in waiting the second handle:
you can think of it as “swapping” one signal foo#rer. You can use this method on a paif\afntWaitHandles to
set up two threads to rendezvous or “meet” at dmeespoint in time. EithexutoResetEvent orManualResetEvent
will do the trick. The first thread executes thédwing:

WaitHandle.SignalAndWait (whl, wh2);
whereas the second thread does the opposite:

WaitHandle.SignalAndWait (wh2, whl);

Alternatives to WaitAll and SignalAndWait

WaitAll andSignalAndWait won't run in a single-threaded apartment. Fortelyathere are alternatives. In the case
of SignalAndWait, it's rare that you need its atomicity guaraniaeaur rendezvous example, for instance, you could
simply callSet on the first wait handle, and th@aitOne on the other. In The Barrier Class, we'll explges another
option for implementing a thread rendezvous.

In the case ofiaitAll, an alternative in some situations is to usePtheallel class’sInvoke method, which we'll
cover in Part 5. (We'll also cov@asks and continuations, and see htwgk . ContinuelWhenAny provides an
alternative towaitAny.)

In all other scenarios, the answer is to take alaelevel approach that solves all signaling proldeimit andPulse.

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl.rights reserved. www.albahari.com/threading/ 40

Synchronization Contexts

An alternative to locking manually is to lodeclaratively By deriving fromContextBoundObject and applying the
Synchronization attribute, you instruct the CLR to apply lockingt@matically. For example:

using System;
using System.Threading;
using System.Runtime.Remoting.Contexts;

[Synchronization]
public class AutolLock : ContextBoundObject

{
public void Demo()

{
Console.Write ("Start...");

Thread.Sleep (1000); // We can't be preempted here
Console.WriteLine ("end"); // thanks to automatic locking!

}
¥

public class Test

{

public static void Main()

{

AutoLock safeInstance = new AutolLock();

new Thread (safeInstance.Demo).Start(); // Call the Demo

new Thread (safeInstance.Demo).Start(); // method 3 times
safeInstance.Demo(); // concurrently.

}
¥

Start... end
Start... end
Start... end

The CLR ensures that only one thread can execule iogafeInstance at a time. It does this by creating a single
synchronizing object — and locking it around eveail to each ofafeInstance's methods or properties. The scope of
the lock—in this case, theafeInstance object—is called aynchronization context

So, how does this work? A clue is in thenchronization attribute's namespace:
System.Runtime.Remoting.Contexts. A ContextBoundObject can be thought of as a “remote” object, meanihg al
method calls are intercepted. To make this intdrorossible, when we instantiatetoLock, the CLR actually

returns a proxy—an object with the same methodspaoperties of anutoLock object, which acts as an intermediary.
It's via this intermediary that the automatic loukiakes place. Overall, the interception addsra@umicrosecond to
each method call.

Automatic synchronization cannot be used to pratetic type members, nor classes not derived from
ContextBoundObject (for instance, a Windows Form).

The locking is applied internally in the same w#gu might expect that the following example wileld the same
result as the last:

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl.rights reserved. www.albahari.com/threading/ 41

[Synchronization]
public class AutolLock : ContextBoundObject

{
public void Demo()

{
Console.Write ("Start...");
Thread.Sleep (1000);
Console.WriteLine ("end");

}

public void Test()

{
new Thread (Demo).Start();

new Thread (Demo).Start();
new Thread (Demo).Start();
Console.ReadLine();

}

public static void Main()

{

new AutoLock().Test();

}
¥

(Notice that we've sneaked itansole.ReadLine statement). Because only one thread can execdeeata time in
an object of this class, the three new threadsreiitlain blocked at theemo method until therest method finishes —
which requires th@eadLine to complete. Hence we end up with the same rasubiefore, but only after pressing the
Enter key. This is a thread-safety hammer almasthbugh to preclude any useful multithreading iwvithclass!

Further, we haven't solved a problem describedegaifl AutoLock were a collection class, for instance, we'd still
require a lock around a statement such as theafislfp assuming it ran from another class:

if (safeInstance.Count > @) safeInstance.RemoveAt (0);
unless this code's class was itself a synchrorizetlextBoundObject!

A synchronization context can extend beyond th@ead a single object. By default, if a synchrodizdject is
instantiated from within the code of another, belthre the same context (in other words, one big)ldis behavior
can be changed by specifying an integer flagyimchronization attribute’s constructor, using one of the
constants defined in thig/nchronizationAttribute class:

Constant M eaning

NOT_SUPPORTED Equivalent to not using the Synclreahi attribute

SUPPORTED Joins the existing synchronization context if ingi@ed from another
synchronized object, otherwise remains unsynchechiz

REQUIRED Joins the existing synchronization context if insi@ed from another

(default) synchronized object, otherwise creates a new contex

REQUIRES_NEW Always creates a new synchronizatmmext

So, if object of clasSynchronizedA instantiates an object of claSgnchronizedB, they'll be given separate
synchronization contexts $fynchronizedB is declared as follows:

[Synchronization (SynchronizationAttribute.REQUIRES_NEW)]
public class SynchronizedB : ContextBoundObject { ...

The bigger the scope of a synchronization contbgteasier it is to manage, but the less the oppitytfor useful
concurrency. At the other end of the scale, sepaaichronization contexts invite deadlocks. Faneple:

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl.rights reserved. www.albahari.com/threading/ 42

[Synchronization]
public class Deadlock : ContextBoundObject
{
public DeadLock Other;
public void Demo() { Thread.Sleep (1000); Other.Hello(); }

void Hello() { Console.WriteLine ("hello"); }
}
public class Test
{
static void Main()
{
Deadlock deadl = new Deadlock();
Deadlock dead2 = new Deadlock();
deadl.0Other = dead2;
dead2.0ther = deadi;
new Thread (deadl.Demo).Start();
dead2.Demo();
}
}

Because each instancebefadlock is created withirrest—an unsynchronized class—each instance will getsvin
synchronization context, and hence, its own lockeWthe two objects call upon each other, it doéskeé long for the
deadlock to occur (one second, to be precise!)prbblem would be particularly insidious if theadlock andTest
classes were written by different programming tedbreay be unreasonable to expect those respenfsibtheTest
class to be even aware of their transgressioa)dee know how to go about resolving it. This i€antrast to explicit
locks, where deadlocks are usually more obvious.

Reentrancy

A thread-safe method is sometimes called reento@cuse it can be preempted part way througixésugion, and
then called again on another thread without ikeffIn a general sense, the terms thread-safecenttant are
considered either synonymous or closely related.

Reentrancy, however, has another more sinisteratation in automatic locking regimes. If tRgnchronization
attribute is applied with theeentrant argument true:

[Synchronization(true)]

then the synchronization context's lock will be pemarily released when execution leaves the contexhe previous
example, this would prevent the deadlock from ogogr obviously desirable. However, a side effedhiat during this
interim, any thread is free to call any methodmariginal object ("re-entering" the synchroniaatcontext) and
unleashing the very complications of multithreadimg is trying to avoid in the first place. Thighe problem of
reentrancy.

Becausg Synchronization(true)] is applied at a class-level, this attribute tuemery out-of-context
method call made by the class into a Trojan fontreacy.

While reentrancy can be dangerous, there are smeefiew other options. For instance, suppose osg¢mianplement
multithreading internally within a synchronized sdaby delegating the logic to workers running otgén separate
contexts. These workers may be unreasonably hiddersommunicating with each other or the origioject without
reentrancy.

This highlights a fundamental weakness with aut@sinchronization: the extensive scope over whicking is
applied can actually manufacture difficulties thety never have otherwise arisen. These difficuttidsadlocking,
reentrancy, and emasculated concurrency—can makaahkcking more palatable in anything other teample
scenarios.

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl.rights reserved. www.albahari.com/threading/ 43

Part 3. Using Threads

The Event-Based Asynchronous Pattern

The event-based asynchronous pattern (EAP) progd@sple means by which classes can offer muititiing
capability without consumers needing to explicgttart or manage threads. It also provides thewatig features:

» A cooperative cancellation model
» The ability to safely update WPF or Windows Forraatmols when the worker completes
» Forwarding of exceptions to the completion event

The EAP is just a pattern, so these features naustritten by the implementer. Just a few classekerFramework
follow this pattern, most notabBackgroundwWorker (which we’ll cover next), andebClient in System.Net.
Essentially the pattern is this: a class offeraraify of members that internally manage multithiegdsimilar to the
following.

// These members are from the WebClient class:

public byte[] DownloadData (Uri address); // Synchronous version
public void DownloadDataAsync (Uri address);

public void DownloadDataAsync (Uri address, object userToken);

public event DownloadDataCompletedEventHandler DownloadDataCompleted;

public void CancelAsync (object userState); // Cancels an operation
public bool IsBusy { get; } // Indicates if still running

The*Async methods execute asynchronously: in other wores, start an operation on another thread and thiamre
immediately to the caller. When the operation catgd, thexCompleted event fires—automatically callinthvoke if
required by a WPF or Windows Forms application sTéuent passes back an event arguments objeciotfizins:

» A flag indicating whether the operation was candéley the consumer callingancelAsync)
* An Error object indicating an exception that was throwracif)
e TheuserToken object if supplied when calling thiesync method

Here’s how we can usé&bClient’s EAP members to download a web page:

var wc = new WebClient();
wc.DownloadStringCompleted += (sender, args) =>
{
if (args.Cancelled)
Console.WriteLine ("Canceled");
else if (args.Error != null)
Console.WriteLine ("Exception:
else
{
Console.WriteLine (args.Result.Length +
// We could update the UI from here...
}
b
wc.DownloadStringAsync (new Uri ("http://www.lingpad.net")); // Start it

+ args.Error.Message);

chars were downloaded");

A class following the EAP may offer additional gpsuof asynchronous methods. For instance:

public string DownloadString (Uri address);

public void DownloadStringAsync (Uri address);

public void DownloadStringAsync (Uri address, object userToken);

public event DownloadStringCompletedEventHandler DownloadStringCompleted;

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl.rights reserved. www.albahari.com/threading/ 44

However, these will share the samscelAsync andIsBusy members. Therefore, only one asynchronous operatio

can happen at once.

is described in Chapter 23 of C# 4.0 in a Nutshell)

The EAP offers th@ossibilityof economizing on threads, if its internal implertaion follows the APM (this

We'll see in Part 5 howasks offer similar capabilities—including exceptiomi@rding, continuations, cancellation
tokens, and support for synchronization contextss hakesmplementinghe EAP less attractive—except in simple

cases wherBackgroundWorker will do.

BackgroundWorker

BackgroundWorker is a helper class in titg/stem. ComponentModel

namespace for managing a worker thread. It carobsidered a
general-purpose implementation of the EAP, andiges/the
following features:

» A cooperative cancellation model

* The ability to safely update WPF or Windows Forrstools
when the worker completes

» Forwarding of exceptions to the completion event
» A protocol for reporting progress

* An implementation of Component allowing it to be sited in
Visual Studio’s designer

BackgroundWorker uses the thread pool, which means you should
never callAbort on aBackgroundWorker thread.

Using BackgroundWorker

Here are the minimum steps in usBurkgroundwWorker:

1. InstantiateBackgroundWorker and handle theoWork event.
2. CallRunWorkerAsync, optionally with arobject argument.

This then sets it in motion. Any argument passeklitdlorkerAsync
will be forwarded tdoWork’s event handler, via the event argument’s
Argument property. Here’s an example:

class Program

{

static BackgroundWorker _bw = new BackgroundWorker();

More than the
coolest LINQ tool

S,

The ultimate C# scratchpad

LINQPad

FREE

Written by the author of this article

www.linqgpad.net

static void Main()

{
_bw.DoWork += bw_DoWork;
_bw.RunWorkerAsync ("Message to worker");
Console.ReadLine();

¥
static void bw DoWork (object sender, DoWorkEventArgs e)

// This is called on the worker thread
Console.WriteLine (e.Argument);
// Perform time-consuming task...
}
}

BackgroundWorker has aRunWorkerCompleted event that fires after ttimWork event handler has done its job.

// writes "Message to worker"

HandlingRunWorkerCompleted is not mandatory, but you usually do so in ordegiery any exception that was

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl.rights reserved. www.albahari.com/threading/

45

thrown inDoWork. Further, code within AaunWorkerCompleted event handler is able to update user interfacéraisn
without explicit marshaling; code within tibeWork event handler cannot.

To add support for progress reporting:

1. SetthelorkerReportsProgress property totrue

2. Periodically calReportProgress from within theDoWork event handler with a “percentage complete” vadung]
optionally, a user-state object.

3. Handle theerogressChanged event, querying its event argumeritisogressPercentage property.

4. Code in theerogressChanged event handler is free to interact with Ul contrjoist as with
RunWorkerCompleted. This is typically where you will update a progdsar.

To add support for cancellation:

1. SetthelorkerSupportsCancellation property totrue

2. Periodically check théancellationPending property from within th@owWork event handler. If it'srue, set the
event argument'sancel property totrue, and return. (The worker can also Geticel and exit without
CancellationPending beingtrue if it decides that the job is too difficult andcin’'t go on.)

3. CallcancelAsync to request cancellation.
Here’s an example that implements all the preceféintures:

using System;
using System.Threading;
using System.ComponentModel;

class Program

{

static BackgroundwWorker _bw;

static void Main()
{
_bw = new BackgroundWorker
{
WorkerReportsProgress = true,
WorkerSupportsCancellation = true
B3
_bw.DoWork += bw_DoWork;
_bw.ProgressChanged += bw_ProgressChanged;
_bw.RunWorkerCompleted += bw_RunWorkerCompleted;

_bw.RunWorkerAsync ("Hello to worker");

Console.WriteLine ("Press Enter in the next 5 seconds to cancel");
Console.ReadlLine();

if (_bw.IsBusy) _bw.CancelAsync();

Console.ReadLine();

}

static void bw DoWork (object sender, DoWorkEventArgs e)

{
for (int i = @; 1 <= 100; i += 20)

if (_bw.CancellationPending) { e.Cancel = true; return; }

_bw.ReportProgress (i);

Thread.Sleep (1000); // Just for the demo... don't go sleeping
} // for real in pooled threads!

e.Result = 123; // This gets passed to RunWorkerCompleted
}

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl.rights reserved. www.albahari.com/threading/ 46

static void bw_RunWorkerCompleted (object sender,
RunWorkerCompletedEventArgs e)
{
if (e.Cancelled)
Console.WriteLine ("You canceled!");
else if (e.Error != null)
Console.WriteLine ("Worker exception:
else
Console.WriteLine ("Complete:

+ e.Error.ToString());

+ e.Result); // from DoWork

}

static void bw_ProgressChanged (object sender,
ProgressChangedEventArgs e)
{
Console.WriteLine ("Reached " + e.ProgressPercentage + "%");
}
}

// Output:

Press Enter in the next 5 seconds to cancel
Reached 0%

Reached 20%

Reached 40%

Reached 60%

Reached 80%

Reached 100%

Complete: 123

Press Enter in the next 5 seconds to cancel
Reached 0%

Reached 20%

Reached 40%

You canceled!

Subclassing BackgroundWorker

Subclassin@ackgroundiWorker is an easy way to implement the EAP, in cases whemeed to offer only
one asynchronously executing method.

BackgroundWorker is not sealed and provides a virtdaboWork method, suggesting another pattern for its use. In
writing a potentially long-running method, you cduwlrite an additional version returning a subcldsse
BackgroundWorker, preconfigured to perform the job concurrentlyeTdonsumer then needs to handle only the
RunlWorkerCompleted andProgressChanged events. For instance, suppose we wrote a timeucoing method called
GetFinancialTotals:

public class Client

{

Dictionary <string,int> GetFinancialTotals (int foo, int bar) { ... }

}
We could refactor it as follows:

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl.rights reserved. www.albahari.com/threading/ 47

public class Client

{

public FinancialWorker GetFinancialTotalsBackground (int foo, int bar)

{

return new FinancialWorker (foo, bar);

}
¥

public class FinancialWorker : BackgroundWorker

{

public Dictionary <string,int> Result; // You can add typed fields.
public readonly int Foo, Bar;

public FinancialWorker()

{

WorkerReportsProgress = true;
WorkerSupportsCancellation = true;

}
public FinancialWorker (int foo, int bar) : this()
{
this.Foo = foo; this.Bar = bar;
}

protected override void OnDoWork (DoWorkEventArgs e)

{

ReportProgress (0, "Working hard on this report...");

// Initialize financial report data
/...

while (!<finished report>)
{
if (CancellationPending) { e.Cancel = true; return; }
// Perform another calculation step ...
/] ...
ReportProgress (percentCompleteCalc, "Getting there...");

¥
ReportProgress (100, "Done!");

e.Result = Result = <completed report data>;

}
}

Whoever callssetFinancialTotalsBackground then gets &inancialWorker: a wrapper to manage the
background operation with real-world usabilitycéin report progress, can be canceled, is friendly WPF and
Windows Forms applications, and handles exceptizais

Interrupt and Abort

All blocking methods (such adeep, Join, EndInvoke, andwWait) block forever if the unblocking condition is neve
met and no timeout is specified. Occasionallyait be useful to release a blocked thread premgfdoelinstance,
when ending an application. Two methods accompliih

e Thread.Interrupt
* Thread.Abort

TheAbort method is also capable of ending a nonblockedthrestuck, perhaps, in an infinite logybort is
occasionally useful inichescenariosInterrupt is almost never needed.

Interrupt andAbort can cause considerable trouble: it's preciselyabse theyseemike obvious choices in
solving a range of problems that it's worth examintheir pitfalls.

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl.rights reserved. www.albahari.com/threading/ 48

Interrupt

Calling Interrupt on a blocked thread forcibly releases it, throwarfhreadInterruptedException, as follows:

static void Main()

{
Thread t = new Thread (delegate()
{
try { Thread.Sleep (Timeout.Infinite); }
catch (ThreadInterruptedException) { Console.Write ("Forcibly "); }
Console.WriteLine ("Woken!™);
1
t.Start();
t.Interrupt();
}
// Output:

Forcibly Woken!
Interrupting a thread does not cause the threaddounless thehreadInterruptedException is unhandled.

If Interrupt is called on a thread that's not blocked, theatireontinues executing until it next blocks, atathpoint
aThreadInterruptedException is thrown. This avoids the need for the followiegt:

if ((worker.ThreadState & ThreadState.WaitSleepJoin) > 9)
worker.Interrupt();

which is not thread-safe because of the possilufifgreemption between thie& statement andorker. Interrupt.

Interrupting a thread arbitrarily is dangerous, boer, because any framework or third-party methiodse calling

stack could unexpectedly receive the interruptaathan your intended code. All it would take is tiee thread to block
briefly on a simple lock or synchronization res@yrand any pending interruption would kick in.Hétmethod isn'’t
designed to be interrupted (with appropriate clgarade infinally blocks), objects could be left in an unusableestat
or resources incompletely released.

Moreover,Interrupt is unnecessary: if you are writing the code thatks, you can achieve the same result more
safely with a signaling construct—or Framework g .@ancellation tokens. And if you want to “unbloddmeone
else’s codepbort is nearly always more useful.

Abort

A blocked thread can also be forcibly releasedtgiabort method. This has an effect similar to callihgterrupt,
except that &hreadAbortException is thrown instead of @hreadInterruptedException. Furthermore, the
exception will be rethrown at the end of et ch block (in an attempt to terminate the thread food) unless
Thread.ResetAbort is called within thecatch block. In the interim, the thread ha3tereadState of
AbortRequested.

An unhandledrhreadAbortException is one of only two types of exception that doesaamse application
shutdown (the other isppDomainUnloadException).

The big difference betweamterrupt andAbort is what happens when it's called on a threadithast blocked.
Whereadnterrupt waits until the thread next blocks before doingthimg, Abort throws an exception on the thread
right where it's executing (unmanaged code excepleus is a problem because .NET Framework codghtribe
aborted—code that is not abort-safe. For exampée) abort occurs while BileStream is being constructed, it's
possible that an unmanaged file handle will renegien until the application domain ends. This ralesusingAbort

in almost any nontrivial context.

For more detail on why Abort is unsafe, see Abgrfiitnreads in Part 4.

There are two cases, though, where you can sadelybort. One is if you are willing to tear down a thread’s
application domain after it is aborted. A good epéof when you might do this is in writing a utésting framework.
Another case where you can céiort safely is on your own thread (because you knowethkavhere you are).

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl.rights reserved. www.albahari.com/threading/ 49

Aborting your own thread throws an “unswallowabéxteption: one that gets rethrown after each daitotk.
ASP.NET does exactly this when you caddirect.

LINQPad aborts threads when you cancel a runawagygiéfter aborting, it dismantles and re-creates t
query’s application domain to avoid the potentigblluted state that could otherwise occur.

Safe Cancellation

As we saw in the preceding section, callifigrt on a thread is dangerous in most scenarios. Temative, then, is to
implement acooperativepattern whereby the worker periodically checkkag that indicates whether it should abort
(like in BackgroundwWorker). To cancel, the instigator simply sets the flagd then waits for the worker to comply.
ThisBackgroundWorker helper class implements such a flag-based catioellpattern, and you easily implement one
yourself.

The obvious disadvantage is that the worker methost be written explicitly to support cancellatidvonetheless, this
is one of the few safe cancellation patterns. lstitate this pattern, we’'ll first write a classeicapsulate the
cancellation flag:

class RulyCanceler

{

object _cancellLocker = new object();
bool _cancelRequest;
public bool IsCancellationRequested

{

get { lock (_cancelLocker) return _cancelRequest; }

}
public void Cancel() { lock (_cancelLocker) _cancelRequest = true; }

public void ThrowIfCancellationRequested()
{

if (IsCancellationRequested) throw new OperationCanceledException();
}
}

OperationCanceledException is a Framework type intended for just this purp@sey exception class will
work just as well, though.

We can use this as follows:

class Test
{
static void Main()
{
var canceler = new RulyCanceler();
new Thread (() => {
try { Work (canceler); }
catch (OperationCanceledException)
{
Console.WriteLine ("Canceled!");
}
}).Start();
Thread.Sleep (1000);
canceler.Cancel(); // Safely cancel worker.

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl.rights reserved. www.albahari.com/threading/ 50

static void Work (RulyCanceler c)

{
while (true)

{
c.ThrowIfCancellationRequested();

/...
try { OtherMethod (c); }
finally { /* any required cleanup */ }

}
}

static void OtherMethod (RulyCanceler c)

{
// Do stuff...

c.ThrowIfCancellationRequested();
¥
¥

We could simplify our example by eliminating tRelyCanceler class and adding the static boolean field
_cancelRequest to theTest class. However, doing so would mean that if séwtaraads callediork at once, setting
_cancelRequest to true would cancel all workers. O®gulyCanceler class is therefore a useful abstraction. Its only
inelegance is that when we look at ek method’s signature, the intention is unclear:

static void Work (RulyCanceler c)

Might thework method itself intend to catlancel on theRulyCanceler object? In this instance, the answer is no, so
it would be nice if this could be enforced in thpd system. Framework 4.0 providesicellation tokenfor this exact
purpose.

Cancellation Tokens

Framework 4.0 provides two types that formalizedbeperative cancellation pattern that we just destrated:
CancellationTokenSource andCancellationToken. The two types work in tandem:

e A CancellationTokenSource defines a&ancel method.

* A CancellationToken defines artisCancellationRequested property and
ThrowIfCancellationRequested method.

Together, these amount to a more sophisticatedoveo$ theRulyCanceler class in our previous example. But
because the types are separate, you can isolaabithig to cancel from the ability to check thencallation flag.

To use these types, first instantiateaacellationTokenSource object:
var cancelSource = new CancellationTokenSource();

Then, pass itSoken property into a method for which you'd like to gapt cancellation:
new Thread (() => Work (cancelSource.Token)).Start();

Here’s howwork would be defined:

void Work (CancellationToken cancelToken)

{

cancelToken.ThrowIfCancellationRequested();

}...

When you want to cancel, simply caincel oncancelSource.

CancellationToken is actually a struct, although you can treaki la class. When implicitly copied, the
copies behave identically and reference the originacellationTokenSource.

TheCancellationToken struct provides two additional useful members. fitst iswWaitHandle, which returns a wait
handle that’s signaled when the token is cancdled.second igegister, which lets you register a callback delegate
that will be fired upon cancellation.

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl.rights reserved. www.albahari.com/threading/ 51

Cancellation tokens are used within the .NET Fraarktself, most notably in the following classes:
* ManualResetEventSlim andSemaphoreSlim
* CountdownEvent
* Barrier
* BlockingCollection
* PLINQ and the Task Parallel Library

Most of these classes’ use of cancellation tokems theirWait methods. For example, if yolait on a
ManualResetEventSlim and specify a cancellation token, another threadencel its wait. This is much tidier and
safer than callingnterrupt on the blocked thread.

Lazy Initialization

A common problem in threading is how to lazily ialize a shared field in a thread-safe fashion. ided arises when
you have a field of a type that's expensive to twics:

class Foo

{

public readonly Expensive Expensive = new Expensive();

)

class Expensive { /* Suppose this is expensive to construct */ }

The problem with this code is that instantiatifagy incurs the performance cost of instantiatixgensive—whether
or not theExpensive field is ever accessed. The obvious answer ismhsteuct the instanaen demand

class Foo

{
Expensive _expensive;
public Expensive Expensive // Lazily instantiate Expensive

{
get

{
if (_expensive == null) _expensive = new Expensive();
return _expensive;
}
}

}...

The question then arises, is this thread-safe?esoi the fact that we're accessingxkpensive outside a lock
without a memory barrier, consider what would hapipéwo threads accessed this property at onceyTould both
satisfy theif statement’s predicate and each thread end upawdififerentinstance oExpensive. As this may lead to
subtle errors, we would say, in general, that ¢bide is not thread-safe.

The solution to the problem is to lock around cliegland initializing the object:

Expensive _expensive;
readonly object _expenseLock = new object();

public Expensive Expensive
{
get
{
lock (_expenselLock)
{
if (_expensive == null) _expensive = new Expensive();
return _expensive;
}
}
}

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl.rights reserved. www.albahari.com/threading/ 52

Lazy<T>

Framework 4.0 provides a new class calledy<T> to help with lazy initialization. If instantiatesith an argument of
true, it implements the thread-safe initialization pattjust described.

Lazy<T> actually implements a slightly more efficient versof this pattern, calledouble-checked locking
Double-checked locking performs an additional itdatad to avoid the cost of obtaining a lockhié bbject
is already initialized.

To uselLazy<T»>, instantiate the class with a value factory delediaat tells it how to initialize a new value, ahé
argumenttrue. Then access its value via th&lue property:

Lazy<Expensive> _expensive = new Lazy<Expensive>
(() => new Expensive(), true);

public Expensive Expensive { get { return _expensive.Value; } }

If you passfalse into Lazy<T>'s constructor, it implements the thread-unsafg latialization pattern that we
described at the start of this section—this makese when you want to usezy<T> in a single-threaded context.

Lazylnitializer

LazyInitializer is a static class that works exactly likezy<T> except:

« Its functionality is exposed through a static methizat operates directly on a field in your owneyphis avoids a
level of indirection, improving performance in casehere you need extreme optimization.

« It offers another mode of initialization that haasltiple threads race to initialize.

To useLazyInitializer, callEnsureInitialized before accessing the field, passing a referenteetfield and the
factory delegate:

Expensive _expensive;
public Expensive Expensive

{
get // Implement double-checked locking

{

LazyInitializer.EnsureInitialized (ref _expensive,
() => new Expensive());
return _expensive;

}
¥

You can also pass in another argument to requasttimpeting threadsceto initialize. This sounds similar to our
original thread-unsafe example, except that tte firead to finish always wins—and so you end ith @nly one
instance. The advantage of this technique is tisa¢ven faster (on multicores) than double-chedkeking—because

it can be implemented entirely without locks. Tisign extreme optimization that you rarely need|, ame that comes at
a cost:

 It's slower when more threads race to initializartlyou have cores.
« It potentially wastes CPU resources performing neldunt initialization.

» The initialization logic must be thread-safe (irstbase, it would be thread-unsaf&xbensive’s constructor
wrote to static fields, for instance).

« If the initializer instantiates an object requiridigposal, the “wasted” object won't get disposeéthewut additional
logic.

For reference, here’s how double-checked lockingigemented:

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl.rights reserved. www.albahari.com/threading/ 53

volatile Expensive _expensive;
public Expensive Expensive

{
get
{
if (_expensive == null)
{
var expensive = new Expensive();
lock (_expenselLock) if (_expensive == null) _expensive = expensive;
}

return _expensive;

}
}

And here’s how the race-to-initialize pattern iplemented:

volatile Expensive _expensive;
public Expensive Expensive

{
get
{
if (_expensive == null)
{
var instance = new Expensive();
Interlocked.CompareExchange (ref _expensive, instance, null);

}

return _expensive;

}
}

Thread-Local Storage

Much of this article has focused on synchronizationstructs and the issues arising from havingattseoncurrently
access the same data. Sometimes, however, youaviaeep data isolated, ensuring that each thresd Iseparate
copy. Local variables achieve exactly this, buytaee useful only with transient data.

The solution ighread-local storageYou might be hard-pressed to think of a requinetméata you’'d want to keep
isolated to a thread tends to be transient by eatts main application is for storing “out-of-bdrahta—that which
supports the execution path’s infrastructure, agmessaging, transaction, and security tokensirigasuch data
around in method parameters is extremely clumsyadirdates all but your own methods; storing suébrimation in
ordinary static fields means sharing it amongtakads.

Thread-local storage can also be useful in optmgigiarallel code. It allows each thread to excleigiaccess
its own version of a thread-unsafe object withaeeding locks—and without needing to reconstruat dhgect
between method calls.

There are three ways to implement thread-locahgtar

[ThreadStatic]

The easiest approach to thread-local storagerisate a static field with th&hreadStatic attribute:
[ThreadStatic] static int _x;
Each thread then sees a separate copy.of

Unfortunately,[ThreadStatic] doesn’t work with instance fields (it simply dossthing); nor does it play well with
field initializers—they execute oniynceon the thread that's running when the static coottr executes. If you need to
work with instance fields—or start with a nondefardlue—ThreadLocal<T> provides a better option.

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl.rights reserved. www.albahari.com/threading/ 54

ThreadLocal<T>

ThreadLocal<T> is new to Framework 4.0. It provides thread-lstatage for both static and instance fields—and
allows you to specify default values.

Here’s how to create ehreadLocal<int> with a default value of for each thread:
static ThreadlLocal<int> _x = new ThreadLocal<int> (() => 3);

You then use x’s Value property to get or set its thread-local value.ohilbs of usinghreadLocal is that values are
lazily evaluated: the factory function evaluategiom first call (for each thread).

ThreadLocal<T> and instance fields

ThreadlLocal<T> is also useful with instance fields and captumexl variables. For example, consider the problém o
generating random numbers in a multithreaded enmient. TheRandom class is not thread-safe, so we have to either
lock around using@andom (limiting concurrency) or generate a separatedom object for each thread.
ThreadLocal<T> makes the latter easy:

var localRandom = new ThreadLocal<Random>(() => new Random());
Console.WriteLine (localRandom.Value.Next());

Our factory function for creating ttRandom object is a bit simplistic, though, in thtndom’s parameterless
constructor relies on the system clock for a randomber seed. This may be the same forRwaiom objects created
within ~10 ms of each other. Here’s one way taitfix

var localRandom = new ThreadlLocal<Random>
(() => new Random (Guid.NewGuid().GetHashCode()));

We'll use this in Part 5 (see the parallel speléttieg example in “PLINQ").

GetData and SetData

The third approach is to use two methods inTie=ad classGetData andSetData. These store data in thread-
specific “slots”.Thread.GetData reads from a thread’s isolated data stdheead. SetData writes to it. Both
methods require BocalDataStoreSlot object to identify the slot. The same slot carubed across all threads and
they'll still get separate values. Here’s an exampl

class Test

{

// The same LocalDataStoreSlot object can be used across all threads.
LocalDataStoreSlot _secSlot = Thread.GetNamedDataSlot ("securityLevel");

// This property has a separate value on each thread.
int SecurityLevel

{
get
{
object data = Thread.GetData (_secSlot);
return data == null ? @ : (int) data; // null == uninitialized
}
set { Thread.SetData (_secSlot, value); }

}

In this instance, we callethread.GetNamedDataSlot, which creates a named slot—this allows sharinipaif slot
across the application. Alternatively, you can colr slot’'s scope yourself by instantiating@calDataStoreSlot
explicitty—without providing any name:

class Test

{

LocalDataStoreSlot _secSlot = new LocalDataStoreSlot();

Thread.FreeNamedDataSlot will release a named data slot across all thraagspnly once all references to that
LocalDataStoreSlot have dropped out of scope and have been garbdlgeted. This ensures that threads don't get

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl.rights reserved. www.albahari.com/threading/ 55

data slots pulled out from under their feet, aglan they keep a reference to the appropriat@1DataStoreSlot
object while the slot is needed.

Timers

If you need to execute some method repeatedlygataeintervals, the easiest way is wittiraer. Timers are
convenient and efficient in their use of memory aggburces—compared with techniques such as tlosvioh:

new Thread (delegate() {
while (enabled)
{

DoSomeAction();
Thread.Sleep (TimeSpan.FromHours (24));

}).Start();

Not only does this permanently tie up a threaduss® but without additional codingpSomeAction will happen at a
later time each day. Timers solve these problems.

The .NET Framework provides four timers. Two ofgh@re general-purpose multithreaded timers:
* System.Threading.Timer
e System.Timers.Timer
The other two are special-purpose single-threaideets:
e System.Windows.Forms.Timer (Windows Forms timer)
* System.Windows.Threading.DispatcherTimer (WPF timer)

The multithreaded timers are more powerful, aceyrand flexible; the single-threaded timers arersafd more
convenient for running simple tasks that updatedtdms Forms controls or WPF elements.

Multithreaded Timers

System.Threading.Timer is the simplest multithreaded timer: it has jusbastructor and two methods (a delight for
minimalists, as well as book authors!). In thedeling example, a timer calls thié ck method, which writes “tick...”
after five seconds have elapsed, and then eveondedfter that, until the user presses Enter:

using System;
using System.Threading;

class Program

{

static void Main()

{
// First interval = 5000ms; subsequent intervals = 1000ms
Timer tmr = new Timer (Tick, "tick...", 5000, 1000);
Console.ReadlLine();
tmr.Dispose(); // This both stops the timer and cleans up.

}

static void Tick (object data)

{
// This runs on a pooled thread
Console.WritelLine (data); // Writes "tick..."

}

}

You can change a timer’s interval later by callitsgthange method. If you want a timer to fire just once, dfe
Timeout.Infinite in the constructor’s last argument.

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl.rights reserved. www.albahari.com/threading/ 56

The .NET Framework provides another timer clashefsame name in tlsgstem. Timers namespace. This simply
wraps thesystem. Threading. Timer, providing additional convenience while using ithentical underlying engine.
Here’s a summary of its added features:

» A Component implementation, allowing it to be sited in Visw&tludio’s designer
* An Interval property instead of @hange method

» An Elapsed eventinstead of a callback delegate

* An Enabled property to start and stop the timer (its defaaltie beingfalse)

e Start andStop methods in case you're confusedemabled

* An AutoReset flag for indicating a recurring event (defaultwalistrue)

* A SynchronizingObject property withInvoke andBeginInvoke methods for safely calling methods on WPF
elements and Windows Forms controls

Here’s an example:

using System;
using System.Timers; // Timers namespace rather than Threading

class SystemTimer

{

static void Main()

{
Timer tmr = new Timer(); // Doesn't require any args
tmr.Interval = 500;
tmr.Elapsed += tmr_Elapsed; // Uses an event instead of a delegate
tmr.Start(); // Start the timer
Console.ReadlLine();
tmr.Stop(); // Stop the timer
Console.ReadlLine();
tmr.Start(); // Restart the timer
Console.ReadLine();
tmr.Dispose(); // Permanently stop the timer

¥

static void tmr_Elapsed (object sender, EventArgs e)

{
Console.WriteLine ("Tick");

}

}

Multithreaded timers use the thread pool to allofeva threads to serve many timers. This meansthieatallback

method oiElapsed event may fire on a different thread each tims d@alled. Furthermor&lapsed always fires
(approximately) on time—regardless of whether ttevjpusElapsed has finished executing. Hence, callbacks or event
handlers must be thread-safe.

The precision of multithreaded timers depends eroiberating system, and is typically in the 10-20region. If you
need greater precision, you can use native intanopcall the Windows multimedia timer. This hascisien down to 1
ms and it is defined iwminmm.dll First calltimeBeginPeriod to inform the operating system that you need high
timing precision, and then calimeSetEvent to start a multimedia timer. When you're done| taineKillEvent to
stop the timer andimeEndPeriod to inform the OS that you no longer need hightignprecision. You can find
complete examples on the Internet that use theimmedia timer by searching for the keywordbmport winmm.dll
timesetevent

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl.rights reserved. www.albahari.com/threading/ 57

Single-Threaded Timers

The .NET Framework provides timers designed toielite thread-safety issues for WPF and Windows Borm
applications:

* System.Windows.Threading.DispatcherTimer (WPF)
e System.Windows.Forms.Timer (Windows Forms)

The single-threaded timers are not designed to wotgide their respective environments. If you aise
Windows Forms timer in a Windows Service applicatifor instance, theimer event won't fire!

Both are likeSystem.Timers.Timer in the members that they exposeterval, Tick, Start, andStop) and are
used in a similar manner. However, they differ aimtthey work internally. Instead of using the tlt¢mol to generate
timer events, the WPF and Windows Forms timersaalthe message pumping mechanism of their underiyser
interface model. This means that thiek event always fires on the same thread that ofligineeated the timer—
which, in a normal application, is the same thresed to manage all user interface elements andat®nthis has a
number of benefits:

* You can forget about thread safety.
» A freshTick will never fire until the previousick has finished processing.

* You can update user interface elements and cortti@stly fromTick event handling code, without calling
Control.Invoke orDispatcher.Invoke.

It sounds too good to be true, until you realiz #hprogram employing these timers is not realljtithreaded—there
is no parallel executiorOne thread serves all timers—as well as the psireg4Jl events. This brings us to the
disadvantage of single-threaded timers:

* Unless therick event handler executes quickly, the user interfEm®mes unresponsive.

This makes the WPF and Windows Forms timers s@tfdslonly small jobs, typically those that involupdating some
aspect of the user interface (e.g., a clock or twwn display). Otherwise, you need a multithreatii@er.

In terms of precision, the single-threaded timeessamilar to the multithreaded timers (tens oflisgiconds), although
they are typically lesaccurate because they can be delayed while other usefanterequests (or other timer events)
are processed.

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl.rights reserved. www.albahari.com/threading/ 58

Part 4. Advanced Topics

Nonblocking Synchronization

Earlier, we said that the need for synchronizatinses even in the simple case of assigning oementing a field.
Although locking can always satisfy this need, ateaded lock means that a thread must block, snfféhe overhead
of a context switch and the latency of being dedalesl, which can be undesirable in highly concuresm
performance-critical scenarios. The .NET Framewsmknblockingsynchronization constructs can perform simple
operations without ever blocking, pausing, or vejti

Writing nonblocking or lock-free multithreaded copi®perly is tricky! Memory barriers, in particulare easy
to get wrong (theolatile keyword is even easier to get wrong). Think cdhgfwhether you really need the
performance benefits before dismissing ordinarkdo®emember that acquiring and releasing an uandet
lock takes as little as 20ns on a 2010-era desktop.

The nonblocking approaches also work across melppbcesses. An example of where this might beuligein
reading and writing process-shared memory.

Memory Barriers and Volatility

Consider the following example:

class Foo

{
int _answer;
bool complete;

void A()
{

_answer = 123;
_complete = true;

}

void B()
{

if (_complete) Console.WriteLine (_answer);
¥
¥

If methodsA andB ran concurrently on different threads, might itguessible foB to write “0"? The answer is yes—for
the following reasons:

» The compiler, CLR, or CPU magorderyour program's instructions to improve efficiency.

» The compiler, CLR, or CPU may introduce cachingrojiations such that assignments to variables 't
visible to other threads right away.

C# and the runtime are very careful to ensureghelh optimizations don’t break ordinary single-tted code—or
multithreaded code that makes proper use of Iddksside of these scenarios, you must explicithedethese
optimizations by creatinmemory barriergalso callednemory fencgdo limit the effects of instruction reorderingdan
read/write caching.

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl.rights reserved. www.albahari.com/threading/ 59

Full fences

The simplest kind of memory barrier i$ldl memory barrier(full fencg which prevents any kind of instruction
reordering or caching around that fence. Callihgead .MemoryBarrier generates a full fence; we can fix our
example by applying four full fences as follows:

class Foo

{
int _answer;
bool _complete;

void A()

{
_answer = 123;
Thread.MemoryBarrier(); // Barrier 1
_complete = true;
Thread.MemoryBarrier(); // Barrier 2

}

void B()
{

Thread.MemoryBarrier(); // Barrier 3
if (_complete)

Thread.MemoryBarrier(); // Barrier 4
Console.WriteLine (_answer);

}
}
}

Barriers 1 and 4 prevent this example from writi@y Barriers 2 and 3 provide faeeshnesguarantee: they ensure that
if B ran after A, readingcomplete would evaluate tarue.

A full fence takes around ten nanoseconds on a-2@d @esktop.

The following implicitly generate full fences:
» C#'slock statementMonitor.Enter/Monitor.Exit)
» All methods on th@nterlocked class (we’'ll cover these soon)

» Asynchronous callbacks that use the thread poolsethelude asynchronous delegates, APM callbacks
andTask continuations

» Setting and waiting on a signaling construct
Anything that relies on signaling, such as startingvaiting on arask

By virtue of that last point, the following is tta@-safe:

int x = 0;
Task t = Task.Factory.StartNew (() => x++);
t.Wait();

Console.WritelLine (x); // 1

You don’t necessarily need a full fence with evieidividual read or write. If we had thremswerfields, our example
would still need only four fences:

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl.rights reserved. www.albahari.com/threading/ 60

class Foo
int _answerl, _answer2, _answer3;
bool complete;

void A()
{
_answerl = 1; _answer2 = 2; _answer3 = 3;
Thread.MemoryBarrier();
_complete = true;
Thread.MemoryBarrier();

}

void B()

{
Thread.MemoryBarrier();
if (_complete)

Thread.MemoryBarrier();
Console.WriteLine (_answerl + _answer2 + _answer3);
}
}
}

A good approach is to start by putting memory leasrbefore and after every instruction that readsrites a
shared field, and then strip away the ones thatdgm't need. If you're uncertain of any, leave themOr
better: switch back to using locks!

Do We Really Need Locks and Barriers?

Working with shared writable fieldsvithout locks or fences is asking for trouble. fidie a lot of misleading
information on this topic—including the MSDN docuntation which states th&tmoryBarrier is required
only on multiprocessor systems with weak memoryedrd), such as a system employing multiple Itanium
processors. We can demonstrate that memory baarierisnportant on ordinary Intel Core-2 and Pentium
processors with the following short program. Youdled to run it with optimizations enabled and witha
debugger (in Visual Studio, select Release Modharsolution’s configuration manager, and thert stathout
debugging):

static void Main()

{

bool complete = false;
var t = new Thread (() =>

bool toggle = false;
while (!complete) toggle = !toggle;
1)
t.Start();
Thread.Sleep (1000);
complete = true;
t.Join(); // Blocks indefinitely

}
This programmever terminatebecause theomplete variable is cached in a CPU register. Inserticglato
Thread.MemoryBarrier inside thevhile loop (or locking around readingpmplete) fixes the error.

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl.rights reserved. www.albahari.com/threading/

61

The volatile keyword
Another (more advanced) way to solve this probletoiapply thevolatile keyword to the complete field:
volatile bool complete;

Thevolatile keyword instructs the compiler to generateaaquire-fencen every read from that field, andedease-
fenceon every write to that field. An acquire-fenceymets other reads/writes from being movedorethe fence; a
release-fence prevents other reads/writes fronghmiovedafter the fence. These “half-fences” are faster thah ful
fences because they give the runtime and hardware seope for optimization.

As it happens, Intel’'s X86 and X64 processors ataayply acquire-fences to reads and release-feaces
writes—whether or not you use thelatile keyword—so this keyword has no effect on laedwareif
you're using these processors. Howevei atile doeshave an effect on optimizations performed by the
compiler and the CLR—as well as on 64-bit AMD atwlq greater extent) Itanium processors. This mbwts
you cannot be more relaxed by virtue of your chemninning a particular type of CPU.

(And even if youdo usevolatile, you should still maintain a healthy sense of atyxias we’ll see shortly!)

The effect of applyingolatile to fields can be summarized as follows:

First instruction Second instruction Can they be swapped?

Read Read No

Read Write No

Write Write No (The CLR ensures that write-writeeogtions are never swapped,
even without therolatile keyword)

Write Read Yes!

Notice that applyingolatile doesn't prevent a write followed by a read fronmgeswapped, and this can create
brainteasers. Joe Duffy illustrates the problem weh the following example: iffest1 andTest2 run simultaneously
on different threads, it's possible ferandb to both end up with a value of 0 (despite theafseolatile on bothx
andy):

class IfYouThinkYouUnderstandVolatile
{

volatile int x, y;

void Testl() // Executed on one thread
{
X =1; // Volatile write (release-fence)
int a = y; // Volatile read (acquire-fence)
¥
void Test2() // Executed on another thread
{
y =1; // Volatile write (release-fence)
int b = x; // Volatile read (acquire-fence)

-
}

The MSDN documentation states that use ofithiatile keyword ensures that the most up-to-date value
present in the field at all times. This is incotyeince as we've seen, a write followed by a remube
reordered.

o7

This presents a strong case for avoidingatile: even if you understand the subtlety in this exiamwill other
developers working on your code also understand fifll fence between each of the two assignment®it1 and
Test2 (or a lock) solves the problem.

Thevolatile keyword is not supported with pass-by-referengeiiaents or captured local variables: in these cases
you must use theolatileRead andvolatileWrite methods.

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl.rights reserved. www.albahari.com/threading/ 62

VolatileRead and VolatileWrite

The staticvolatileRead andVolatileWrite methods in th&@hread class read/write a variable while enforcing
(technically, a superset of) the guarantees madbémplatile keyword. Their implementations are relatively
inefficient, though, in that they actually generatikfences. Here are their complete implementetitor the integer

type:

public static void VolatileWrite (ref int address, int value)

{
MemoryBarrier(); address = value;

}

public static int VolatileRead (ref int address)
{
int num = address; MemoryBarrier(); return num;
b
You can see from this that if you calblatileWrite followed byvolatileRead, no barrier is generated in the
middle: this enables the same brainteaser sceti@tiave saw earlier.
Memory barriers and locking

As we said earlieMonitor.Enter andMonitor.Exit both generate full fences. So if we ignore a leakutual
exclusion guarantee, we could say that this:

lock (someField) { ..}
is equivalent to this:

Thread.MemoryBarrier(); { .. } Thread.MemoryBarrier();

Interlocked

Use of memory barriers is not always enough whadirg or writing fields in lock-free code. Operatsoon 64-bit
fields, increments, and decrements require theibeapproach of using thenterlocked helper classinterlocked
also provides theéxchange andCompareExchange methods, the latter enabling lock-free read-maodifite
operations, with a little additional coding.

A statement is intrinsicallgtomicif it executes as a single indivisible instructimmthe underlying processor. Strict
atomicity precludes any possibility of preemptidnsimple read or write on a field of 32 bits ordés always atomic.
Operations on 64-bit fields are guaranteed to bmiatonly in a 64-bit runtime environment, and staénts that
combine more than one read/write operation arerreteenic:

class Atomicity

{
static int x, _y;
static long _z;

static void Test()

{
long mylLocal;
X = 3; // Atomic
_z = 3; // Nonatomic on 32-bit environs (_z is 64 bits)
myLocal = _z; // Nonatomic on 32-bit environs (_z is 64 bits)
Y = _X; // Nonatomic (read AND write operation)
X4+ // Nonatomic (read AND write operation)

¥

}

Reading and writing 64-bit fields is nonatomic @it environments because it requires two sepamatauctions: one
for each 32-bit memory location. So, if thread dds a 64-bit value while thread Y is updatinghteid X may end up
with a bitwise combination of the old and new valatorn read.

The compiler implements unary operators of the kird by reading a variable, processing it, and thetingiit back.
Consider the following class:

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl.rights reserved. www.albahari.com/threading/ 63

class ThreadUnsafe

{

static int _x = 1000,
static void Go() { for (int i = @; i < 100; i++) x--; }

}

Putting aside the issue of memory barriers, yothtrégpect that if 10 threads concurrently asn_x would end up as
0. However, this is not guaranteed, becauseca conditionis possible whereby one thread preempts another in
between retrievingx’s current value, decrementing it, and writingaick (resulting in an out-of-date value being

written).

Of course, you can address these issues by wrafipgngonatomic operations inlack statement. Locking, in fact,
simulates atomicity if consistently applied. Theterlocked class, however, provides an easier and fasteticolfor
such simple operations:

class Program

{

static long _sum;

static void Main()

{

}

}

// Simple increment/decrement operations:
Interlocked.Increment (ref _sum);
Interlocked.Decrement (ref _sum);

// Add/subtract a value:
Interlocked.Add (ref _sum, 3);

// Read a 64-bit field:
Console.WriteLine (Interlocked.Read (ref _sum));

// Write a 64-bit field while reading previous value:
// (This prints "3" while updating _sum to 10)
Console.WriteLine (Interlocked.Exchange (ref _sum, 10));

// Update a field only if it matches a certain value (10):

Console.WriteLine (Interlocked.CompareExchange (ref _sum,
123, 10);

/1 _

/73

// 3

// 10

// 123

All of Interlocked’s methods generate a full fence. Therefore, fithads$ you access vinterlocked don't
need additional fences—unless they're accessether places in your program witholiterlocked or a
lock.

Interlocked’s mathematical operations are restrictedrtorement, Decrement, andAdd. If you want to multiply—
or perform any other calculation—you can do smitkifree style by using theompareExchange method (typically in
conjunction with spin-waiting). We give an exampie'SpinLock and SpinWait”.

Interlocked works by making its need for atomicity known te thperating system and virtual machine.

Interlocked’s methods have a typical overhead of 10 ns—half dfi an uncontendetbck. Further, they
can never suffer the additional cost of contextahing due to blocking. The flip side is that using

Interlocked within a loop with many iterations can be lesscéght than obtaining a single logkoundthe
loop (althoughinterlocked enables greate&oncurrency.

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl.rights reserved. www.albahari.com/threading/ 64

Signaling with Wait and Pulse

Earlier we discussed Event Wait Handles—a simgleading mechanism where a thread blocks untildeiees
notification from another.

A more powerful signaling construct is providedtbgMonitor class, via the static methogsit andPulse (and
PulseAll). The principle is that you write the signalingjiio yourself using custom flags and fields (enatbselock
statements), and then introdutei t andPulse commands to prevent spinning. With just these ougtand théock
statement, you can achieve the functionalitpwfoResetEvent, ManualResetEvent, andSemaphore, as well as
(with some caveats$)aitHandle's static methodsaitAll andwWaitAny. FurthermorelWait andPulse can be
amenable in situations where all of the wait hasidie parsimoniously challenged.

Wait andPulse signaling, however, has some disadvantages owst evait handles:

* Wait/Pulse cannot span application domains or processescomauter.
* You must remember to protect all variables relatetthe signaling logic with locks.

* Wait/Pulse programs may confuse developers relying on Midtssdocumentation.

The documentation problem arises because it's In@ibas howwait andPulse are supposed to be used, even when
you've read up on how they workait andPulse also have a peculiar aversion to dabblers: thdlysegek out any
holes in your understanding and then delight im&mting you! Fortunately, there is a simple pattfraose that tames
Wait andPulse.

In terms of performance, callimylse takes around a hundred nanoseconds on a 201@sg—about a third of the
time it takes to caket on a wait handle. The overhead for waiting on mteonded signal is entirely up to you—
because you implement the logic yourself usingrandi fields and variables. In practice, this ispgimple and
amounts purely to the cost of takingeck.

How to Use Wait and Pulse

Here’s how to us@ait andPulse:

1. Define a single field for use as the synchronizatibject, such as:
readonly object _locker = new object();

2. Define field(s) for use in your custom blocking daon(s). For example:
bool go; or: int _semaphoreCount;

3. Whenever you want to block, include the followirade:

lock (_locker)
while (<blocking-condition>)
Monitor.Wait (_locker);

4. Whenever you change (or potentially change) a lihgckondition, include this code:

lock (_locker)

{
< alter the field(s) or data that might

impact the blocking condition(s) >
Monitor.Pulse (_locker); // or: Monitor.PulseAll (_locker)
}

(If you change a blocking condition and want to block, you can incorporate steps 3 and 4 in a single lock
statement.)

This pattern allows any thread to wait at any tforeany condition. Here’s a simple example, whewmeoaker thread
waits until the go field is set totrue:

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl.rights reserved. www.albahari.com/threading/ 65

class SimpleWaitPulse

{

static readonly object _locker = new object();
static bool _go;

static void Main()

{ // The new thread will block
new Thread (Work).Start(); // because _go==false.
Console.ReadlLine(); // Wait for user to hit Enter
lock (_locker) // Let's now wake up the thread by
{ // setting _go=true and pulsing.
_go = true;
Monitor.Pulse (_locker);
}
}

static void Work()

lock (_locker)
while (!_go)
Monitor.Wait (_locker); // Lock is released while we’re waiting

Console.WriteLine ("Woken!!!™);

}
}

// Output
Woken!!! (after pressing Enter)

For thread safety, we ensure that all shared figldsaccessed within a lock. Hence, we halck statements around
both reading and updating thgo flag. This is essential (unless you're willingfedlow the nonblocking
synchronization principles).

ThewWork method is where we block, waiting for thgo flag to become:rue. TheMonitor.Wait method does the
following, in order:

1.
2.
3.

Execution then continues at the next statementitor.Wait is designed for use withinlack statement; it throws an

Releases the lock oriocker.
Blocks until_locker is “pulsed.”
Reacquires the lock arlocker. If the lock is contended, then it blocks untiétleck is available.

This means that despite appearannedock is held on the synchronization object whiteitor.Wait awaits
a pulse:

lock (_locker)
while (!_go)

Monitor.Wait (_locker); // _lock is released
// lock is regained

}...

exception if called otherwise. The same goe#iforitor.Pulse.

In theMain method, we signal the worker by setting tlge flag (within a lock) and callingulse. As soon as we
release the lockhe worker resumes execution, reiteratingifits1e loop.

ThePulse andPulseAll methods release threads blocked @it statementPulse releases a maximum of one
thread;PulseAll releases them all. In our example, just one thightbcked, so their effects are identical. If mtiian
one thread is waiting, callingulseAll isusuallysafest with our suggested pattern of use.

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl.rights reserved. www.albahari.com/threading/

66

In order forwait to communicate witRulse orPulseAll, the synchronizing object {ocker, in our case)
must be the same.

In our pattern, pulsing indicates ttstmething might have changeahd that waiting threads should recheck their
blocking conditions. In th@ork method, this check is accomplished viathéle loop. Thewaiter then decides
whether to continueyot the notifier If pulsing by itself is taken as instruction tontinue, thevait construct is stripped
of any real value; you end up with an inferior wensof anAutoResetEvent.

If we abandon our pattern, removing tieile loop, the _go flag, and th&keadLine, we get a bare-bong@sit/Pulse
example:

static void Main()

new Thread (Work).Start();
lock (_locker) Monitor.Pulse (_locker);

}

static void Work()

{
lock (_locker) Monitor.Wait (_locker);
Console.WriteLine ("Woken!!!™);

}

It's not possible to display the output, becausenbndeterministic! A race ensues between the mieigad and the
worker. IfWait executes first, the signal worksPifilse executes first, thpulse is lostand the worker remains forever
stuck. This differs from the behavior of antoResetEvent, where itsSet method has a memory or “latching” effect,
so it is still effective if called befongaitone.

Pulse has no latching effect because you're expectedite the latch yourself, using a “go” flag as wd tefore.
This is what makegait andPulse versatile: with a boolean flag, we can make itction as amutoResetEvent;
with an integer field, we can write a CountdownBv&maphore. With more complex data structures, we can go
further and write such constructs as a producesiomer queue.

Producer/Consumer Queue

Earlier, we described the concept of a produceseorer queue, and how to write one withhamoResetEvent. We're
now going to write a more powerful version withit andPulse. This time, we’ll allow an arbitrary number of
workers, each with its own thread. We’'ll keep trackhe threads in an array:

Thread[] _workers;
This gives us the option bining those threads later when we shut down the queue

Each worker thread will execute a method cafledsume. We can create the threads and start them ingéedivop as
follows:

public PCQueue (int workerCount)

{

_workers = new Thread [workerCount];

// Create and start a separate thread for each worker
for (int i = @; i < workerCount; i++)
(_workers [i] = new Thread (Consume)).Start();

}

Rather than using a simple string to describela tas’ll take the more flexible approach of usindedlegate. We’ll use
theSystem.Action delegate in the .NET Framework, which is definedadlows:

public delegate void Action();

This delegate matches any parameterless methoderiidtd theThreadStart delegate. We can still represent tasks
that call method with parameters, though—by wragphe call in an anonymous delegate or lambda ezjme:

Action myFirstTask = delegate // Anonymous method
{

}s

Console.WriteLine ("foo");

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl.rights reserved. www.albahari.com/threading/ 67

Action mySecondTask = () => Console.WriteLine ("foo"); // Lambda expression
To represent a queue of tasks, we’ll usegiineue<T> collection as we did before:
Queue<Action> _itemQ = new Queue<Action>();
Before going into thénqueueItem and Consume methods, let’s look first at the complete code:

using System;
using System.Threading;
using System.Collections.Generic;

public class PCQueue

{
readonly object _locker = new object();
Thread[] _workers;
Queue<Action> _itemQ = new Queue<Action>();

public PCQueue (int workerCount)

{

_workers = new Thread [workerCount];

// Create and start a separate thread for each worker
for (int i = @; i < workerCount; i++)
(_workers [i] = new Thread (Consume)).Start();

}

public void Shutdown (bool waitForWorkers)
{
// Enqueue one null item per worker to make each exit.
foreach (Thread worker in _workers)
EnqueueItem (null);

// Wait for workers to finish
if (waitForWorkers)
foreach (Thread worker in _workers)
worker.Join();

¥
public void EnqueueItem (Action item)

lock (_locker)

{
_itemQ.Enqueue (item); // We must pulse because we're
Monitor.Pulse (_locker); // changing a blocking condition.
}
}
void Consume()
{
while (true) // Keep consuming until
{ // told otherwise.
Action item;
lock (_locker)
while (_itemQ.Count == @) Monitor.Wait (_locker);
item = _itemQ.Dequeue();
}
if (item == null) return; // This signals our exit.
item(); // Execute item.
}
}
}

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl.rights reserved. www.albahari.com/threading/

Again we have an exit strategy: enqueuing a nesthisignals a consumer to finish after completing@utstanding
items (if we want it to quit sooner, we could useirependent “cancel” flag). Because we're suppgntnultiple
consumers, we must enqueue one null item per carstincompletely shut down the queue.

Here’s aMain method that starts a producer/consumer queueiffgpgawo concurrent consumer threads, and then
enqueues 10 delegates to be shared among the hsoroers:

static void Main()

{
PCQueue g = new PCQueue (2);
Console.WriteLine ("Enqueuing 10 items...");

for (int i = 9; i < 10; i++)

{
int itemNumber = i; // To avoid the captured variable trap
g.EnqueueItem (() =>
{
Thread.Sleep (1000); // Simulate time-consuming work
Console.Write (" Task" + itemNumber);
1
}

g.Shutdown (true);
Console.WriteLine();
Console.WriteLine ("Workers complete!");

}

// Output:
Enqueuing 10 items...
Taskl Taske (pause...) Task2 Task3 (pause...) Task4 Task5 (pause...)
Taské Task7 (pause...) Task8 Task9 (pause...)
Workers complete!

Let's look now at th&nqueueItem method:

public void EnqueueItem (Action item)

{
lock (_locker)
{
_itemQ.Enqueue (item); // We must pulse because we're
Monitor.Pulse (_locker); // changing a blocking condition.
}
}

Because the queue is used by multiple threads, ugt wrap all reads/writes in a lock. And becausgenmodifying a
blocking condition (a consumer may kick into actama result of enqueuing a task), we must pulse.

For the sake of efficiency, we callilse instead oPulseAll when enqueuing an item. This is because (at nost)
consumer need be woken per item. If you had justiom cream, you wouldn’t wake a class of 30 slegphildren to
queue for it; similarly, with 30 consumers, thenmatsbenefit in waking them all—only to have 29 spinseless iteration
on theirwhile loop before going back to sleep. We wouldn’t braakthing functionally, however, by replacinglse
with PulseAll.

Let’s now look at th&onsume method, where a worker picks off and executetean from the queue. We want the
worker to block while there’s nothing to do; in ettwords, when there are no items on the queuecéj@ur blocking
condition is_itemQ.Count == 0:

Action item;

lock (_locker)

{
while (_itemQ.Count == @) Monitor.Wait (_locker);
item = itemQ.Dequeue();

}
if (item == null) return; // This signals our exit
item(); // Perform task.

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl.rights reserved. www.albahari.com/threading/ 69

Thewhile loop exits when itemQ.Count is nonzero, meaning that (at least) one item istanding. We must
dequeue the iteineforereleasing the lock—otherwise, the item may nothieee for us to dequeue (the presence of
other threads means things can change while yold'hliin particular, another consumer just finighenprevious job
could sneak in and dequeue our item if we didnftllemto the lock, and did something like this irste

Action item;
lock (_locker)

{
while (_itemQ.Count == @) Monitor.Wait (_locker);

lock (_locker) // WRONG!
{

item = itemQ.Dequeue(); // Item may not longer be there!

}

After the item is dequeued, we release the lockeudtiately. If we held on to it while performing thesk, we would
unnecessarily block other consumers and produdéesdon’t pulse after dequeuing, as no other consgareever
unblock by there being fewer items on the queue.

Locking briefly is advantageous when usitiit andPulse (and in general) as it avoids unnecessarily
blocking other threads. Locking across many linfesode is fine—providing they all execute quickly.
Remember that you're helped bynitor.Wait’s releasing the underlying lock while awaiting ge!

Wait Timeouts

You can specify a timeout when calliRgit, either in milliseconds or astTameSpan. Thewait method then returns
false if it gave up because of a timeout. The timeoytiap only to thevaiting phaseHence, alait with a timeout
does the following:

1. Releases the underlying lock
2. Blocks until pulsedor the timeout elapses
3. Reacquires the underlying lock

Specifying a timeout is like asking the CLR to gixau a “virtual pulse” after the timeout interval timed-outwWait
will still perform step 3 and reacquire the lock-sfjas if pulsed.

Shouldwait block in step 3 (while reacquiring the lock), dimgeout is ignored. This is rarely an issue,
though, because other threads will lock only byiafl a well-designediait/Pulse application. So, reacquiring|
the lock should be a near-instant operation.

Wait timeouts have a useful application. Sometimesay e unreasonable or impossibletdse whenever an
unblocking condition arises. An example might ba Hlocking condition involves calling a methodttbarives
information from periodically querying a databal$déatency is not an issue, the solution is simplgd-can specify a
timeout when callinglait, as follows:

lock (_locker)
while (<blocking-condition>)
Monitor.Wait (_locker, <timeout>);

This forces the blocking condition to be rechecltthe interval specified by the timeout, as welixoen pulsed. The
simpler the blocking condition, the smaller thedomt can be without creating inefficiency. In tbése, we don’t care
whether thevait was pulsed or timed out, so we ignore its retatue:.

The same system works equally well if the pulsahbisent due to a bug in the program. It can be vaatthing a timeout
to allwait commands in programs where synchronization idquaatly complex, as an ultimate backup for obscure
pulsing errors. It also provides a degree of bugnimity if the program is modified later by someam on thePulse!

Monitor.Wait returns a&ool value indicating whether it got a “real” pulsethfs returnsfalse, it means that
it timed out: sometimes it can be useful to log i throw an exception if the timeout was unexgect

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl.rights reserved. www.albahari.com/threading/ 70

Two-Way Signaling and Races

An important feature dfionitor.Pulse is that it executes asynchronously, meaning ttadesn't itself block or pause
in any way. If another thread is waiting on thesed object, it's unblocked. Otherwise the pulsertmsffect and is
silently ignored.

HencePulse provides one-way communication: a pulsing thrgaatentially) signals a waiting thread. There is no
intrinsic acknowledgment mechanishulse does not return a value indicating whether oritsgbulse was received.
Further, when a notifier pulses and releases it lithere’s no guarantee that an eligible waitédr ki¢k into life
immediately There can be a small delay, at the discretiah@thread scheduler, during which time neithezddrhas a
lock. This means that the pulser cannot know ivben a waiter resumes—unless you code somethirtifispély (for
instance with another flag and another recipra¢ait andPulse).

Relying on timely action from a waiter with no cust acknowledgement mechanism counts as “messiry” Wi
Wait andPulse. You'll lose!

To illustrate, let's say we want to signal a thréad times in a row:

class Race

{

static readonly object _locker = new object();
static bool _go;

static void Main()

{
new Thread (SaySomething).Start();

for (int i = 0; i < 5; i++)
lock (_locker)

{
_go = true;
Monitor.PulseAll (_locker); }
}
static void SaySomething()
{

for (int i = 0; 1 < 5; i++)
lock (_locker)

while (!_go) Monitor.Wait (_locker);
_go = false;
Console.WriteLine ("Wassup?");

}
}
}

// Expected Output:
Wassup?
Wassup?
Wassup?
Wassup?
Wassup?

//Actual Output:
Wassup? (hangs)

This program is flawed and demonstrateéac conditionthefor loop in the main thread can freewheel right thfoug
its five iterations anytime the worker doesn’t htié lock, and possibly before the worker evensitdihe
producer/consumer example didn’t suffer from thiskem because if the main thread got ahead ofvtitker, each
request would queue up. But in this case, we neednain thread to block at each iteration if thek&os still busy
with a previous task.

We can solve this by adding aeady flag to the class, controlled by the worker. Theimthread then waits until the
worker’s ready before setting theo flag.

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl.rights reserved. www.albahari.com/threading/ 71

This is analogous to a previous example that peréorthe same thing using twotoResetEvents, except
more extensible.

Here it is:

class Solved

{
static readonly object _locker = new object();
static bool _ready, go;

static void Main()

{
new Thread (SaySomething).Start();

for (int i = 0; 1 < 5; i++)
lock (_locker)

while (!_ready) Monitor.Wait (_locker);
_ready = false;
_go = true;
Monitor.PulseAll (_locker);
}
}

static void SaySomething()
{
for (int i = 0; 1 < 5; i++)
lock (_locker)

{
_ready = true;
Monitor.PulseAll (_locker); // Remember that calling
while (!_go) Monitor.Wait (_locker); // Monitor.Wait releases
go = false; // and reacquires the lock.
Console.WriteLine ("Wassup?");
}
}
}
// Output:

Wassup? (repeated five times)

In theMain method, we clear theready flag, set the go flag, and pulse, all in the sarheck statement. The benefit of
doing this is that it offers robustness if we latgroduce a third thread into the equation. Imaginother thread trying
to signal the worker at the same time. Our logwadertight in this scenario; in effect, we're cieg _ready and
setting_go, atomically.

Simulating Wait Handles

You might have noticed a pattern in the previousngple: both waiting loops have the following struet

lock (_locker)

{
while (! flag) Monitor.Wait (_locker);

_flag = false;
}

where_flag is set totrue in another thread. This is, in effect, mimickingfautoResetEvent. If we omitted
_flag=false, we'd then have the basis oflanualResetEvent.

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl.rights reserved. www.albahari.com/threading/ 72

Let’s flesh out the complete code for@aualResetEvent usingWait andPulse:
readonly object _locker = new object();
bool _signal;

void WaitOne()

lock (_locker)
{

while (!_signal) Monitor.Wait (_locker);

}
¥

void Set()

lock (_locker) { _signal = true; Monitor.PulseAll (_locker); }
}
void Reset() { lock (_locker) _signal = false; }
We usecPulseAll because there could be any number of blocked msaite
Writing anAutoResetEvent is simply a matter of replacing the codevin tOne with this:

lock (_locker)
{

while (! _signal) Monitor.Wait (_locker);
_signal = false;

¥
and replacin@pulseAll with Pulse in theSet method:

lock (_locker) { _signal = true; Monitor.Pulse (_locker); }

Use ofPulseAll would forgo fairness in the queuing of backloggediters, because each callPiolseAll
would result in the queue breaking and then re-ilogm

Replacing signal with an integer field would form the basis af@naphore.

Simulating the static methods that work acrosg afserait handles is easy in simple scenarios. ddugivalent of
callingWaitAll is nothing more than a blocking condition thairporates all the flags used in place of the wait
handles:

lock (_locker)
while (! _flagl && ! flag2 & ! flag3...)
Monitor.Wait (_locker);

This can be particularly useful given thatitAll is often unusable due to COM legacy issues. SimglaiaitAny is
simply a matter of replacing tl&& operator with theg | operator.

If you have dozens of flags, this approach becdassefficient because they must all share a single
synchronizing object in order for the signalingatork atomically. This is where wait handles have an
advantage.

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl.rights reserved. www.albahari.com/threading/ 73

Waiting queues and PulseAll

When more than one threadits upon the same object, a “waiting queue” formsrakthe synchronizing
object (this is distinct from the “ready queue” diser granting access to a lock). EatH se then releases a
single thread at the head of the waiting-queud, can enter the ready-queue and re-acquire the Tddnk of
it like an automatic car park: you queue firsthat pay station to validate your ticket (the waitiqugeue); you
gueue again at the barrier gate to be let outréhdy queue).

I Monitor.Exit
Ready Queue]—— Lock >

Monitor.Enter

(when

scheduled Wait
by CPU)

Pulse »
-—— <l Waiting Queue

The order inherent in the queue structure, howes@ften unimportant inait/Pulse applications, and in
these cases it can be easier to imagine a “pookadting threads. Each pulse, then, releases oittnwéhread
from the pool.

PulseAll releases the entire queue, or pool, of waitingatis. The pulsed threads won't all start executing
exactly at the same time, however, but rather inrderly sequence, as each of thiit t statements tries to
re-acquire the same lock. In effeet,lseAl1l moves threads from the waiting-queue to the repdyue, so
they can resume in an orderly fashion.

Writing a CountdownEvent

With Wait andPulse, we can implement the essential functionality &cauntdownEvent as follows:

public class Countdown

{
object _locker = new object ();
int _value;

public Countdown() { }
public Countdown (int initialCount) { _value = initialCount; }

public void Signal() { AddCount (-1); }

public void AddCount (int amount)
{
lock (_locker)
{
_value += amount;
if (_value <= @) Monitor.PulseAll (_locker);
¥
}

public void Wait()
{
lock (_locker)
while (_value > 0)
Monitor.Wait (_locker);
}
}

The pattern is like what we’ve seen previously,egtchat our blocking condition is based on angetédield.

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl.rights reserved. www.albahari.com/threading/

Thread Rendezvous

We can use theountdown class that we just wrote to rendezvous a paih&ads—as we did earlier with
WaitHandle.SignalAndWait:

class Rendezvous

{

static object _locker = new object();

// In Framework 4.0, we could instead use the built-in CountdownEvent class.
static Countdown _countdown = new Countdown(2);

public static void Main()

{

// Get each thread to sleep a random amount of time.
Random r = new Random();

new Thread (Mate).Start (r.Next (10000));
Thread.Sleep (r.Next (10000));

_countdown.Signal();
_countdown.Wait();

Console.Write ("Mate! ");

}

static void Mate (object delay)

{
Thread.Sleep ((int) delay);

_countdown.Signal();
_countdown.Wait();

Console.Write ("Mate! ");

}
}

In this example, each thread sleeps a random anobtinte, and then waits for the other thread, ltégyin them both
writing “Mate” at (almost) the same time. This &led athread execution barrieand can be extended to any number
of threads (by adjusting the initial countdown \&lu

Thread execution barriers are useful when you wakéeep several threads in step as they procemses ®f tasks.
However, our current solution is limited in that een’t re-use the sant@untdown object to rendezvous threads a
second time—at least not without additional sign@konstructs. To address this, Framework 4.0 desva new class
called Barrier.

The Barrier Class

TheBarrier class is a signaling construct new to Framewaodk W implements shread execution barriemwhich
allows many threads to rendezvous at a point ie.tifilne class is very fast and efficient, and it lugionwait, Pulse,
and spinlocks.

To use this class:

1. Instantiate it, specifying how many threads shqadake in the rendezvous (you can change thisbgtealling
AddParticipants/RemoveParticipants).

2. Have each thread callignalAndWait when it wants to rendezvous.
InstantiatingBarrier with a value o8 causesignalAndWait to block until that method has been called thirees.

But unlike aCountdownEvent, it then automatically starts over: callisgjgnalAndWait again blocks until called
another three times. This allows you to keep sétlreads “in step” with each other as they proeessries of tasks.

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl.rights reserved. www.albahari.com/threading/ 75

SignalAndWait

Thread 1 }---5’9-"-’5‘?‘3’ -------- pDlocked Thread 1 |

GalnC Thread 2 |

[Thieads |.ested,, Flocked Thread 3 |

SignalAndWait Barrier

, >

time

In the following example, each of three threadgegrthe numbers 0 through 4, while keeping in stigip the other
threads:

static Barrier _barrier = new Barrier (3);

static void Main()

{
new Thread (Speak).Start();

new Thread (Speak).Start();
new Thread (Speak).Start();

}

static void Speak()
{

for (int i = @; i < 5; i++)
{

Console.Write (i + " ");
_barrier.SignalAndWait();

}
¥

OUTPUT: ©00111222333444

A really useful feature dfarrier is that you can also specifypast-phase actiomhen constructing it. This is a
delegate that runs aftetgnalAndwait has been calledtimes, bubeforethe threads are unblocked. In our example,
if we instantiate our barrier as follows:

static Barrier _barrier = new Barrier (3, barrier => Console.WriteLine());

then the output is:

PwNRO®
AwWwNPRO
PwNRO®

A post-phase action can be useful for coalescing flam each of the worker threads. It doesn’t hawworry about
preemption, because all workers are blocked whileés its thing.

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl.rights reserved. www.albahari.com/threading/ 76

Reader/Writer Locks

Quite often, instances of a type are thread-safedncurrent read operations, but not for concurogaates (nor for a
concurrent read and update). This can also bentitheresources such as a file. Although proteciivggances of such
types with a simple exclusive lock for all modesaotess usually does the trick, it can unreasorabtyict concurrency
if there are many readers and just occasional epdain example of where this could occur is in sifiess application
server, where commonly used data is cached fordéaséval in static fields. TheeaderWriterLockSlim class is
designed to provide maximum-availability lockingjist this scenario.

ReaderWriterLockSlim was introduced in Framework 3.5 and is a replaceiffoe the older “fat”
ReaderWriterLock class. The latter is similar in functionality, buis several times slower and has an
inherent design fault in its mechanism for handloak upgrades.

When compared to an ordinatgck (Monitor.Enter/Exit), ReaderWriterLockS1lim is twice as slow.

With both classes, there are two basic kinds dédea read lock and a write lock:

» A write lock is universally exclusive.
» Aread lock is compatible with other read locks.

So, a thread holding a write lock blocks all ottieeads trying to obtain a read write lock (and vice versa). But if no
thread holds a write lock, any number of threadg cmancurrently obtain a read lock.

ReaderWriterLockS1lim defines the following methods for obtaining ankasing read/write locks:

public void EnterReadLock();
public void ExitReadLock();

public void EnterWritelLock();
public void ExitWriteLock();

Additionally, there are “Try” versions of athterxxx methods that accept timeout arguments in the sfyle
Monitor.TryEnter (timeouts can occur quite easily if the resouscedavily contendedReaderiWriterLock
provides similar methods, namedquirexxx andReleasexxX. These throw anpplicationException if a timeout
occurs, rather than returniffiglse.

The following program demonstratesaderWriterLockS1lim. Three threads continually enumerate a list, wiie
further threads append a random number to thewisty second. A read lock protects the list readeTd a write lock
protects the list writers:

class SlimDemo

{
static ReaderWriterLockSlim _rw = new ReaderWriterLockSlim();
static List<int> items = new List<int>();
static Random rand = new Random();

static void Main()

{
new Thread (Read).Start();
new Thread (Read).Start();
new Thread (Read).Start();

new Thread (Write).Start ("A");
new Thread (Write).Start ("B");

}

static void Read()
{
while (true)
{
_rw.EnterReadLock();
foreach (int i in _items) Thread.Sleep (10);
_rw.ExitReadLock();
}
}

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl.rights reserved. www.albahari.com/threading/ 77

static void Write (object threadID)

while (true)

{
int newNumber = GetRandNum (100);
_rw.EnterWriteLock();
_items.Add (newNumber);
_rw.ExitWriteLock();
Console.WriteLine ("Thread " + threadID + " added " + newNumber);
Thread.Sleep (109);

}

}

static int GetRandNum (int max) { lock (_rand) return _rand.Next(max); }

}

In production code, you'd typically adaty/finally blocks to ensure that locks were released if @egtion
was thrown.

Here's the result:

Thread B added 61
Thread A added 83
Thread B added 55
Thread A added 33

ReaderWriterLockS1lim allows more concurremead activity than a simple lock. We can illustratesthiy inserting
the following line in thenrite method, at the start of théile loop:

Console.WriteLine (_rw.CurrentReadCount + " concurrent readers");

This nearly always prints “3 concurrent readerb&fead methods spend most of their time insideftheeach loops).
As well asCurrentReadCount, ReaderiWriterLockS1lim provides the following properties for monitoriragks:

public bool IsReadLockHeld { get; }
public bool IsUpgradeableReadlLockHeld { get; }
public bool IsWritelLockHeld { get; }
public int WaitingReadCount { get; }
public int WaitingUpgradeCount { get; }
public int WaitingWriteCount { get; }
public int RecursiveReadCount { get; }
public int RecursiveUpgradeCount { get; }
public int RecursiveWriteCount { get; }

Upgradeable Locks and Recursion

Sometimes it's useful to swap a read lock for dendck in a single atomic operation. For instarsegpose you want
to add an item to a list only if the item wasnitegldy present. Ideally, you'd want to minimize timee spent holding
the (exclusive) write lock, so you might proceedalows:

Obtain a read lock.

Test if the item is already present in the list] &0, release the lock amdturn.
Release the read lock.

Obtain a write lock.

Add the item.

gk wbdpPE

The problem is that another thread could sneakdhraodify the list (e.g., adding the same itemaein steps 3 and 4.
ReaderWriterLockSlim addresses this through a third kind of lock caladpgradeable lockAn upgradeable lock is
like a read lock except that it can later be praddbd a write lock in an atomic operation. Heredsvhyou use it:

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl.rights reserved. www.albahari.com/threading/ 78

Call EnterUpgradeableReadLock.

Perform read-based activities (e.g., test whetheitem is already present in the list).
Call EnterWritelLock (this converts the upgradeable lock to a writ&)oc

Perform write-based activities (e.g., add the iterthe list).

Call ExitWriteLock (this converts the write lock back to an upgradiesdk).
Perform any other read-based activities.

Call ExitUpgradeableReadlLock.

No g bk wbdpe

From the caller’s perspective, it's rather like teelsor recursive locking. Functionally, thoughstep 3,
ReaderWriterLockSlim releases your read lock and obtains a fresh Vadfe atomically.

There’s another important difference between upgmbte locks and read locks. While an upgradeabledan coexist
with any number ofeadlocks, only one upgradeable lock can itself betaéut at a time. This prevents conversion
deadlocks berializingcompeting conversions—just as update locks dd)h Server:

SQL Server Reader WriterLockSlim
Share lock Read lock

Exclusive lock Write lock

Update lock Upgradeable lock

We can demonstrate an upgradeable lock by charigingite method in the preceding example such that it adds
number to list only if not already present:

while (true)
{
int newNumber = GetRandNum (100);
_rw.EnterUpgradeableReadLock() ;
if (!_items.Contains (newNumber))
{
_rw.EnterWriteLock();
_items.Add (newNumber);
_rw.ExitWriteLock();
Console.WriteLine ("Thread " + threadID + " added " + newNumber);
¥
_rw.ExitUpgradeableReadLock();
Thread.Sleep (100);

}

ReaderWriterLock can also do lock conversions—but unreliably beeaidoesn’t support the concept of
upgradeable locks. This is why the designemeafieriWriterLockS1lim had to start afresh with a new clasg.

Lock recursion

Ordinarily, nested or recursive locking is prohélitwithReaderiWriterLockS1lim. Hence, the following throws an
exception;

var rw = new ReaderWriterLockSlim();
rw.EnterReadLock();
rw.EnterReadLock();
rw.ExitReadLock();
rw.ExitReadLock();

It runs without error, however, if you constretaderiWriterLockS1lim as follows:
var rw = new ReaderWriterLockSlim (LockRecursionPolicy.SupportsRecursion);

This ensures that recursive locking can happenibgtyu plan for it. Recursive locking can createdasired
complexity because it's possible to acquire moanthne kind of lock:

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl.rights reserved. www.albahari.com/threading/ 79

rw.EnteririteLock();

rw.EnterReadLock();

Console.WriteLine (rw.IsReadLockHeld); // True
Console.WriteLine (rw.IsWriteLockHeld); // True
rw.ExitReadLock();

rw. ExitWriteLock();

The basic rule is that once you've acquired a Iscksequent recursive locks can be less, but eatayr, on the
following scale:

Read Lock> Upgradeable Lock> Write Lock

A request to promote an upgradeable lock to a Writk, however, is always legal.

Suspend and Resume

A thread can be explicitly suspended and resumethe deprecated methotisead . Suspend andThread.Resume.
This mechanism is completely separate to thatatkihg. Both systems are independent and operateradlel.

A thread can suspend itself or another threadir@aluspend results in the thread briefly entering the
SuspendRequested state, then upon reaching a point safe for garbaljection, it enters theuspended state. From
there, it can be resumed only via another threatidhlls itsResume method Resume will work only on a suspended
thread, not a blocked thread.

From .NET 2.0Suspend andResume have been deprecated, their use discouraged leeohtise danger inherent in
arbitrarily suspending another thread. If a threaldling a lock on a critical resource is suspentteelwhole application
(or computer) can deadlock. This is far more damgethan calling Abort—which results in any suctki®being
released (at least theoretically) by virtue of codéinally blocks.

It is, however, safe to calluspend on the current thread—and in doing so you caneémgint a simple synchronization
mechanism—ith a worker thread in a loop, perfornartgsk, callingguspend on itself, then waiting to be resumed
(“woken up”) by the main thread when another tastieady. The difficulty, though, is in determiniwhether the
worker is suspended. Consider the following code:

worker.NextTask = "MowTheLawn";

if ((worker.ThreadState & ThreadState.Suspended) > 0)
worker.Resume;

else
// We cannot call Resume as the thread's already running.
// Signal the worker with a flag instead:
worker.AnotherTaskAwaits = true;

This is horribly thread-unsafe: the code could tEempted at any point in these five lines, durirgclv the worker
could march on in and change its state. Whilertloa worked around, the solution is more complex ttihe
alternative—using a synchronization construct sagln AutoResetEvent or Wait and Pulse. This makesend and
Resume useless on all counts.

The deprecatesluspend andResume methods have two modes: dangerous and useless!

Aborting Threads

You can end a thread forcibly via theort method:

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl.rights reserved. www.albahari.com/threading/ 80

class Abort

{
static void Main()
{
Thread t = new Thread (delegate() { while(true); }); // Spin forever
t.Start();
Thread.Sleep (1000); // Let it run for a second...
t.Abort(); // then abort it.
}
}

The thread upon being aborted immediately entersttbrtRequested state. If it then terminates as expected, it goes
into theStopped state. The caller can wait for this to happendilirg Join:

class Abort

{
static void Main()
{
Thread t = new Thread (delegate() { while (true); });
Console.WriteLine (t.ThreadState); // Unstarted
t.Start();
Thread.Sleep (1000);
Console.WriteLine (t.ThreadState); // Running
t.Abort();
Console.WriteLine (t.ThreadState); // AbortRequested
t.Join();
Console.WriteLine (t.ThreadState); // Stopped
}
}

Abort causes @ahreadAbortException to be thrown on the target thread, in most cagés where the thread’s
executing at the time. The thread being aborteccbanse to handle the exception, but the excettiom gets
automatically re-thrown at the end of tteetch block (to help ensure the thread, indeed, endxjascted). It is,
however, possible to prevent the automatic re-thvgwallingThread.ResetAbort within the catch block. Then
thread then re-enters tRenning state (from which it can potentially be abortediay In the following example, the
worker thread comes back from the dead each timéant is attempted:

class Terminator
{
static void Main()
{
Thread t = new Thread (Work);
t.Start();
Thread.Sleep (1000); t.Abort();
Thread.Sleep (1000); t.Abort();
Thread.Sleep (1000); t.Abort();

}

static void Work()

while (true)

{
try { while (true); }
catch (ThreadAbortException) { Thread.ResetAbort(); }
Console.WriteLine ("I will not diel");

}

}
}

ThreadAbortException is treated specially by the runtime, in that iedio't cause the whole application to terminate if
unhandled, unlike all other types of exception.

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl.rights reserved. www.albahari.com/threading/ 81

Abort will work on a thread in almost any state — ruigniblocked, suspended, or stopped. However if pended
thread is aborted, BhreadStateException is thrown—this time on the calling thread—and d@ihertion doesn't kick
off until the thread is subsequently resumed. Hehew to abort a suspended thread:

try { suspendedThread.Abort(); }
catch (ThreadStateException) { suspendedThread.Resume(); }
// Now the suspendedThread will abort.

Complications with Thread.Abort

Assuming an aborted thread doesn't RalletAbort, you might expect it to terminate fairly quickBut as it happens,
with a good lawyer the thread may remain on deathfor quite some time! Here are a few factors thay keep it
lingering in theAbortRequested state:

 Static class constructors are never aborted partthvaugh (so as not to potentially poison the fas the
remaining life of the application domain)

 All catch/finally blocks are honored, and never raed mid-stream

* If the thread is executing unmanaged code whertedhoexecution continues until the next managee cod
statement is reached

The last factor can be particularly troublesomehat the .NET framework itself often calls unmaségode,
sometimes remaining there for long periods of tifie example might be when using a networking oadase class. If
the network resource or database server diesstowsto respond, it's possible that execution caelthain entirely
within unmanaged code, for perhaps minutes, depgrati the implementation of the class. In theses;ame certainly
wouldn't want to Join the aborted thread—at leastwvithout a timeout!

Aborting pure .NET code is less problematic, aglastry/finally blocks or using statements are incorporated to
ensure proper cleanup takes place shouldraadAbortException be thrown. However, even then one can still be
vulnerable to nasty surprises. For example, consigefollowing:

using (StreamWriter w = File.CreateText ("myfile.txt"))
w.Write ("Abort-Safe?");

C#'susing statement is simply a syntactic shortcut, whicthia case expands to the following:

StreamhWriter w;

w = File.CreateText ("myfile.txt");
try { w.Write ("Abort-Safe"); }
finally { w.Dispose(); }

It's possible for ambort to fire after thestreamiWriter is created, but before the try block begins. bt,fay digging
into the IL, one can see that it’s also possibtdtfto fire in between theétreamWriter being created and assigned to
W:

IL_eeQl: ldstr "myfile.txt"

IL_e006: call class [mscorlib]System.IO.StreamWriter
[mscorlib]System.IO0.File: :CreateText(string)

IL @0ob: stloc.0

.try

{

Either way, the call to theispose method in the finally block is circumvented, rdéig in an abandoned open file
handle, preventing any subsequent attempts toeangéi le. txt until the application domain ends.

In reality, the situation in this example is wostdl, because anbort would most likely take place within the
implementation ofile.CreateText. This is referred to as opaque code—that whicluerét have the source.
Fortunately, .NET code is never truly opaque: we &gain wheel in ILDASM— or better still, Lutz Rosts
Reflector—and see thatile.CreateText callsStreamWriter’s constructor, which has the following logic:

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl.rights reserved. www.albahari.com/threading/ 82

public StreamWriter (string path, bool append, ...)
{

Stream streaml = StreamWriter.CreateFile (path, append);
this.Init (streami, ...);

}

Nowhere in this constructor is therey/catch block, meaning that if thebort fires anywhere within the (non-
trivial) Init method, the newly created stream will be abandom#l no way of closing the underlying file handle

This raises the question on how to go about writingbort-friendly method. The most common workatbis not to
abort another thread at all—but to implement a eoafive cancellation pattern, as described prelyous

Ending Application Domains

Another way to implement an abort-friendly workeiby having its thread run in its own applicatiamdin. After
calling Abort, you tear down the application domain, therebgasing any resources that were improperly disposed.

Strictly speaking, the first step—aborting the #ue-is unnecessary, because when an applicationiddsnanloaded,
all threads executing code in that domain are aatiadly aborted. However, the disadvantage ofinglyn this
behavior is that if the aborted threads don't axa timely fashion (perhaps due to code in finaligcks, or for other
reasons discussed previously) the application domvdi not unload, and @annotUnloadAppDomainException will
be thrown on the caller. For this reason, it'sdyet explicitly abort the worker thread, then dalin with some
timeout (over which you have control) before uniogdhe application domain.

In the following example, the worker enters anriité loop, creating and closing a file using ther&lunsafe
File.CreateText method. The main thread then repeatedly start@bads workers. It usually fails within one or two
iterations, withCreateText getting aborted part way through its internal iempéntation, leaving behind an abandoned
open file handle:

using System;
using System.IO;
using System.Threading;

class Program
{
static void Main()
{
while (true)
{
Thread t = new Thread (Work);
t.Start();
Thread.Sleep (109);
t.Abort();
Console.WriteLine ("Aborted");
}
}

static void Work()

while (true)
using (StreamWriter w = File.CreateText ("myfile.txt")) { }
¥
¥

Aborted

Aborted

IOException: The process cannot access the file 'myfile.txt' because it
is being used by another process.

Here's the same program modified so the workeathrans in its own application domain, which isaaded after the
thread is aborted. It runs perpetually without erb@cause unloading the application domain retetimeabandoned file
handle:

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl.rights reserved. www.albahari.com/threading/ 83

class Program

{
static void Main ()
{
while (true)
{
AppDomain ad = AppDomain.CreateDomain ("worker");
Thread t = new Thread (delegate() { ad.DoCallBack (Work); });
t.Start();
Thread.Sleep (109);
t.Abort();
if (!t.Join (2000))
{
// Thread won't end - here's where we could take further action,
// if, indeed, there was anything we could do. Fortunately in
// this case, we can expect the thread *always* to end.
}
AppDomain.Unload (ad); // Tear down the polluted domain!
Console.WriteLine ("Aborted");
}
}
static void Work()
{
while (true)
using (StreamWriter w = File.CreateText ("myfile.txt")) { }
}
}
Aborted
Aborted
Aborted
Aborted

Creating and destroying an application domainletirely time-consuming in the world of threadingfisities (taking a
few milliseconds) so it's something conducive téingedone irregularly rather than in a loop! Alslee tseparation
introduced by the application domain introducestl@oelement that can be either of benefit or detnt, depending on
what the multi-threaded program is setting outdisieve. In a unit-testing context, for instanceynimg threads on
separate application domains is of benefit.

Ending Processes

Another way in which a thread can end is when doremt process terminates. One example of this ewahworker
thread'sIsBackground property is set to true, and the main thread tiegswhile the worker is still running. The
background thread is unable to keep the applicatioe, and so the process terminates, taking élekdround thread
with it.

When a thread terminates because of its parenepspit stops dead, and no finally blocks are erelcu

The same situation arises when a user terminataarasponsive application via the Windows Task Mgnaor a
process is killed programmatically wWaocess.Kill.

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl.rights reserved. www.albahari.com/threading/ 84

Part 5: Parallel Programming

Parallel Programming

In this section, we cover the multithreading APéswito Framework 4.0 for leveraging multicore preoes:

» Parallel LINQ or PLINQ
» TheParallel class

» The task parallelism constructs
» Theconcurrentcollections
e SpinLock andSpinWait

These APIs are collectively known (loosely) as RPA4rallel Framework). Thearallel class together with the task
parallelism constructs is called tiask Parallel Libraryor TPL.

Framework 4.0 also adds a number of lower-leveatimg constructs that are aimed equally at tiauiti
multithreading. We covered these previously:

» The low-latency signaling constructsfmaphoreSlim, ManualResetEventSlim, CountdownEvent and
Barrier)

» Cancellation tokens for cooperative cancellation
e The lazy initialization classes
* ThreadLocal<T>

You'll need to be comfortable with the fundamental®arts 1-4 before continuing—particularly loakiand thread
safety.

Why PFX?

In recent times, CPU clock speeds have stagnattdhanufacturers have shifted their focus to inénepsore counts.
This is problematic for us as programmers becausstandard single-threaded code will not autoralijicun faster as
a result of those extra cores.

Leveraging multiple cores is easy for most serygliaations, where each thread can independentigleaa separate
client request, but is harder on the desktop—becaugpically requires that you take your compiataally intensive
code and do the following:

1. Partition it into small chunks.
2. Execute those chunks in parallel via multithreading
3. Collatethe results as they become available, in a thseé&land performant manner.

Although you can do all of this with the classicltitbreading constructs, it's awkward—particulathe steps of
partitioning and collating. A further problem isatithe usual strategy of locking for thread saéetyses a lot of
contention when many threads work on the samealatace.

The PFX libraries have been designed specificallyelp in these scenarios.

Programming to leverage multicores or multiple @ssors is calledarallel programmingThis is a subset of
the broader concept of multithreading.

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl.rights reserved. www.albahari.com/threading/ 85

PFX Concepts

There are two strategies for partitioning work agéimreadsdata parallelismandtask parallelism

When a set of tasks must be performed on manywddtias, we can parallelize by having each threafbpe the
(same) set of tasks on a subset of values. Thallsddata parallelismbecause we are partitioning tihata between
threads. In contrast, witilask parallelismwe partition theasks in other words, we have each thread perform fereifit
task.

In general, data parallelism is easier and sca#sibto highly parallel hardware, because it redumr eliminates shared
data (thereby reducing contention and thread-ségsties). Also, data parallelism leverages thetfattthere are often
more data values than discrete tasks, increasegdtallelism potential.

Data parallelism is also conducivestouctured parallelismwhich means that parallel work units start amdsfi in the
same place in your program. In contrast, task fsdisth tends to be unstructured, meaning that [gnabrk units may
start and finish in places scattered across yaugram. Structured parallelism is simpler and lessrgprone and allows
you to farm the difficult job of partitioning antdread coordination (and even result collation)todibraries.

PFX Components

PFX comprises two layers of functionality. The heghayer consists of twstructured data parallelisPIs: PLINQ
and theParallel class. The lower layer contains the task paralieltlasses—plus a set of additional constructeljp h
with parallel programming activities.

...................................

E i Structured Data Parallelism
)
= :
S Parallel Class : PLINQ
P 5 e
¢ :
|3 :
' :
s :
P x : o Slim Lazy
I '
b Task Parallelism : Concur‘rent Spmmg Signaling Initialization
: i | Collections Primitives
' ; Constructs Types
CLR Thread Pool
Threads

PLINQ offers the richest functionality: it automatall the steps of parallelization—including péotiing the work into
tasks, executing those tasks on threads, andioglidite results into a single output sequencecHlieddeclarative—
because you simply declare that you want to pdizalgour work (which you structure as a LINQ guemnd let the
Framework take care of the implementation dethilsontrast, the other approachesiarperative in that you need to
explicitly write code to partition or collate. Ihe¢ case of thearallel class, you must collate results yourself; with the
task parallelism constructs, you must partitionwhek yourself, too:

Partitions work Collatesresults
PLINQ Yes Yes
TheParallel class Yes No
PFX'stask parallelism No No

The concurrent collections and spinning primitibe$p you with lower-level parallel programming &ties. These are
important because PFX has been designed to worintptwith today’s hardware, but also with futurengrations of
processors with far more cores. If you want to mayele of chopped wood and you have 32 workedotthe job, the

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl.rights reserved. www.albahari.com/threading/ 86

biggest challenge is moving the wood without thek&os getting in each other's way. It's the santh dividing an
algorithm among 32 cores: if ordinary locks aredugeprotect common resources, the resultant bhgckiay mean that
only a fraction of those cores are ever actuallgybat once. The concurrent collections are tunedifipally for highly
concurrent access, with the focus on minimizinglominating blocking. PLINQ and thearallel class themselves
rely on the concurrent collections and on spinmirigitives for efficient management of work.

PFX and Traditional Multithreading

A traditional multithreading scenario is one whameltithreading can be of benefit even on a singleec
machine—with no truparallelizationtaking place. We covered these previously: thejuite such tasks as
maintaining a responsive user interface and dowdihgetwo web pages at once.

Some of the constructs that we’ll cover in the pararogramming sections are also sometimes useful
traditional multithreading. In particular:

* PLINQ and therarallel class are useful whenever you want to executeatipas in parallel and then
wait for them to completes{ructuredparallelism). This includes non-CPU-intensive taskch as calling a
web service.

» The task parallelism constructs are useful whenwamt to run some operation on a pooled thread, and
also to manage a task’s workflow through contirarsiand parent/child tasks.

» The concurrent collections are sometimes apprapvidien you want a thread-safe queue, stack, or
dictionary.

* BlockingCollection provides an easy means to implement producer/cegisstructures.

When to Use PFX

The primary use case for PFXgarallel programmingleveraging multicore processors to speed up ceatipually
intensive code.

A challenge in leveraging multicores is Amdahl\w,lavhich states that the maximum performance imgnoent from
parallelization is governed by the portion of tloele that must execute sequentially. For instaficsly two-thirds of
an algorithm’s execution time is parallelizableuyean never exceed a threefold performance gainfa-eith an
infinite number of cores.

So, before proceeding, it's worth verifying thag thottleneck is in parallelizable code. It's alsortir considering
whether your codaeedso be computationally intensive—optimization iseof the easiest and most effective approach.
There’s a trade-off, though, in that some optima@atechniques can make it harder to parallelizieco

The easiest gains come with what's caeebarrassingly parallgbroblems—where a job can be divided easily into
tasks that execute efficiently on their own (stowetl parallelism is very well suited to such promdg. Examples
include many image processing tasks, ray tracind,taute force approaches in mathematics or cryppity. An
example of a nonembarrassingly parallel problermementing an optimized version of the quicksdgorithm—a
good result takes some thought and may requireuctsted parallelism.

PLINQ

PLINQ automatically parallelizes local LINQ queri€d INQ has the advantage of being easy to udeaitit offloads
the burden of both work partitioning and resuliatbn to the Framework.

To use PLINQ, simply callsParallel() on the input sequence and then continue the LIN&ygas usual. The
following query calculates the prime numbers betw@end 100,000—making full use of all cores ontthrget
machine:

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl.rights reserved. www.albahari.com/threading/ 87

// Calculate prime numbers using a simple (unoptimized) algorithm.
IEnumerable<int> numbers = Enumerable.Range (3, 100000-3);

var parallelQuery =
from n in numbers.AsParallel()
where Enumerable.Range (2, (int) Math.Sgrt (n)).All (i =>n % i > 0)
select n;

int[] primes = parallelQuery.ToArray();

AsParallel is an extension method #fystem.Ling.ParallelEnumerable. It wraps the input in a sequence based
onParallelQuery<TSource>, which causes the LINQ query operators that ydasequently call to bind to an
alternate set of extension methods defineRbima11lelEnumerable. These provide parallel implementations of each of
the standard query operators. Essentially, thekwgpartitioning the input sequence into chunka txecute on
different threads, collating the results back atsingle output sequence for consumption:

ParallelEnumerable.Select

a|bl—A[B

Thread 1

|
TS TeToTe T T < (L8} ~LCTe NDHEGE

e fl—»E|F

Thread 3

"abcdef".AsParallel().Select (c => char.ToUpper(c)).ToArray()

CallingAsSequential() unwraps @arallelQuery sequence so that subsequent query operatorsdihd standard
query operators and execute sequentially. Thistessary before calling methods that have sidetefte are not
thread-safe.

For query operators that accept two input sequefieds, GroupJoin, Concat, Union, Intersect, Except, and
Zip), you must applysParallel() to both input sequences (otherwise, an excepsitimrown). You don’t, however,
need to keep applyingsParallel to a query as it progresses, because PLINQ’s quagyators output another
ParallelQuery sequence. In fact, callingParallel again introduces inefficiency in that it forcesrgiag and
repartitioning of the query:

mySequence.AsParallel() // Wraps sequence in ParallelQuery<int>
.Where (n =>n > 100) // Outputs another ParallelQuery<int>
.AsParallel() // Unnecessary - and inefficient!

.Select (n => n * n)

Not all query operators can be effectively paratsd. For those that cannot, PLINQ implements therator
sequentially instead. PLINQ may also operate segplgnif it suspects that the overhead of paratktion will actually
slow a particular query.

PLINQ is only for local collections: it doesn’t wiowith LINQ to SQL or Entity Framework because lim$e cases the
LINQ translates into SQL which then executes omatallase server. However, yoanuse PLINQ to perform additional
local querying on the result sets obtained fronaldase queries.

If a PLINQ query throws an exception, it's rethroamamggregateException whoseInnerExceptions
property contains the real exception (or excepjiddse Working with AggregateException for details.

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl.rights reserved. www.albahari.com/threading/ 88

Why Isn’t .AsParallel() the Default?

Given thatAsParallel transparently parallelizes LINQ queries, the goesarises, “Why didn’'t Microsoft
simply parallelize the standard query operatorsraakle PLINQ the default?”

There are a number of reasons fordpé&in approach. First, for PLINQ to be useful there foelse a
reasonable amount of computationally intensive workt to farm out to worker threads. Most LINQ to
Objects queries execute very quickly, and not evdyld parallelization be unnecessary, but the cxadrof
partitioning, collating, and coordinating the extneeads may actually slow things down.

Additionally:
e The output of a PLINQ query (by default) may diffesm a LINQ query with respect to element ordering

» PLINQ wraps exceptions in aggregateException (to handle the possibility of multiple exceptions
being thrown).

e PLINQ will give unreliable results if the query iokes thread-unsafe methods.

Finally, PLINQ offers quite a few hooks for tuniagd tweaking. Burdening the standard LINQ to Olgjed®I
with such nuances would add distraction.

Parallel Execution Ballistics

Like ordinary LINQ queries, PLINQ queries are Igaaluated. This means that execution is triggerdg when you
begin consuming the results—typically vig@each loop (although it may also be via a conversionrafze such as
ToArray or an operator that returns a single element lureya

As you enumerate the results, though, executioogats somewhat differently from that of an ordiregguential
query. A sequential query is powered entirely lyy¢bnsumer in a “pull” fashion: each element fréwa input sequence
is fetched exactly when required by the consumegrarallel query ordinarily uses independent thraadstch elements
from the input sequence slightiheadof when they're needed by the consumer (ratherdikeleprompter for
newsreaders, or an antiskip buffer in CD playdtghen processes the elements in parallel thrabglgyuery chain,
holding the results in a small buffer so that theyeady for the consumer on demand. If the conspangses or breaks
out of the enumeration early, the query proceslsor @auses or stops so as not to waste CPU timeorory.

You can tweak PLINQ's buffering behavior by callingjthMergeOptions afterAsParallel. The default
value ofAutoBuffered generally gives the best overall resulkstBuffered disables the buffer and is usefy
if you want to see results as soon as possiblelyBuffered caches the entire result set before presenting|i
to the consumer (th@derBy andReverse operators naturally work this way, as do the elereggregation,
and conversion operators).

=

PLINQ and Ordering

A side effect of parallelizing the query operatisrthat when the results are collated, it's notessarily in the same
order that they were submitted, as illustratechéprevious diagram. In other words, LINQ’s normaler-preservation
guarantee for sequences no longer holds.

If you need order preservation, you can force itdlingAsOrdered() afterAsParallel():
myCollection.AsParallel().AsOrdered()...

Calling AsOrdered incurs a performance hit with large numbers ofrelats because PLINQ must keep track of each
element’s original position.

You can negate the effect ®f0rdered later in a query by callingsUnordered: this introduces a “random shuffle
point” which allows the query to execute more ééfitly from that point on. So if you wanted to e input-
sequence ordering for just the first two query apans, you'd do this:

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl.rights reserved. www.albahari.com/threading/ 89

inputSequence.AsParallel().AsOrdered()
.QueryOperatorl()
.QueryOperator2()
.AsUnordered() // From here on, ordering doesn’t matter
.QueryOperator3()

AsOrdered is not the default because for most queries, tiggnal .
input ordering doesn’t matter. In other wordsydibrdered was the Kiss g°°dbye to SQ_L
default, you'd have to applsUnordered to the majority of your Management Studio

parallel queries to get the best performance, whichld be " =
burdensome. ‘93}?59‘5?;‘ p

PLINQ Limitations

There are currently some practical limitations dratPLINQ can
parallelize. These limitations may loosen with ®dgent service
packs and Framework versions.

The following query operators prevent a query fioemg
parallelized, unless the source elements are indhiginal
indexing position:

* Take, TakeWhile, Skip, andSkipWhile

» The indexed versions eklect, SelectMany, andElementAt LI N Q Pa d

Most query operators change the indexing positioglaments FREE
(including those that remove elements, suckhase). This means
that if you want to use the preceding operatoesy'thusually need

to be at the start of the query. Query databases in a

modern query language
The following query operators are parallelizablat, ise an _ . .
expensive partitioning strategy that can sometibgeslower than Written by the author of this article

sequential processing: www.lingpad.net

* Join, GroupBy, GroupJoin, Distinct, Union, Intersect,
andExcept

TheAggregate operator'sseededverloads in their standard incarnations are adlelizable—PLINQ provides
special overloads to deal with this.

All other operators are parallelizable, althougb asthese operators doesn't guarantee that yenyauill be
parallelized. PLINQ may run your query sequentiélly suspects that the overhead of parallelizatioll slow down
that particular query. You can override this bebagind force parallelism by calling the followinfjeat AsParallel():

.WithExecutionMode (ParallelExecutionMode.ForceParallelism)

Example: Parallel Spellchecker

Suppose we want to write a spellchecker that rumnskty with very large documents by leveragingaathilable cores.
By formulating our algorithm into a LINQ query, wan very easily parallelize it.

The first step is to download a dictionary of Esflivords into alashSet for efficient lookup:

if (!File.Exists ("WordLookup.txt")) // Contains about 150,000 words
new WebClient().DownloadFile (
"http://www.albahari.com/ispell/allwords.txt", "WordLookup.txt");

var wordLookup = new HashSet<string> (
File.ReadAllLines ("WordLookup.txt"),
StringComparer.InvariantCultureIgnoreCase);

We'll then use our word lookup to create a testcldoent” comprising an array of a million random dmrAfter
building the array, we'll introduce a couple of Bipg mistakes:

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl.rights reserved. www.albahari.com/threading/ 90

var random = new Random();
string[] wordList = wordLookup.ToArray();

string[] wordsToTest = Enumerable.Range (0, 1000000)
.Select (i => wordList [random.Next (@, wordList.Length)])

.ToArray();
wordsToTest [12345] = "woozsh"; // Introduce a couple
wordsToTest [23456] = "wubsie"; // of spelling mistakes.

Now we can perform our parallel spellcheck by teptiordsToTest againswordLookup. PLINQ makes this very
easy:

var query = wordsToTest
.AsParallel()
.Select ((word, index) => new IndexedWord { Word=word, Index=index })
.Where (iword => !wordLookup.Contains (iword.Word))
.OrderBy (iword => iword.Index);

foreach (var mistake in query)
Console.WriteLine (mistake.Word +

- index = " + mistake.Index);

// OUTPUT:
// woozsh - index = 12345
// wubsie - index = 23456

IndexedWord is a custom struct that we define as follows:
struct IndexedWord { public string Word; public int Index; }

ThewordLookup.Contains method in the predicate gives the query some “haaat makes it worth parallelizing.

We could simplify the query slightly by using aragmous type instead of thedexedwWord struct.
However, this would degrade performance becauseyamaus types (being classes and therefore reference
types) incur the cost of heap-based allocationsaidequent garbage collection.

The difference might not be enough to matter wétugential queries, but with parallel queries, favpistack-
based allocation can be quite advantageous. Thisciguse stack-based allocation is highly paradible (as
each thread has its own stack), whereas all thneads compete for the same heap—managed by a single
memory manager and garbage collector.

Using ThreadLocal<T>

Let’s extend our example by parallelizing the darabf the random test-word list itself. We struet this as a LINQ
query, so it should be easy. Here's the sequerdiaion:

string[] wordsToTest = Enumerable.Range (0, 1000000)
.Select (i => wordList [random.Next (0, wordList.Length)])
.ToArray();

Unfortunately, the call teandom.Next is not thread-safe, so it's not as simple as tmgpAsParallel() into the
query. A potential solution is to write a functithvat locks aroun@andom.Next; however, this would limit
concurrency. The better option is to U$eeadLocal<Random> to create a separatandom object for each thread. We
can then parallelize the query as follows:

var localRandom = new ThreadlLocal<Random>
(() => new Random (Guid.NewGuid().GetHashCode()));

string[] wordsToTest = Enumerable.Range (0, 1000000).AsParallel()
.Select (i => wordList [localRandom.Value.Next (0, wordList.Length)])
.ToArray();

In our factory function for instantiatingrRendom object, we pass in@id’s hashcode to ensure that if tRendom
objects are created within a short period of tithey’ll yield different random number sequences.

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl.rights reserved. www.albahari.com/threading/ 91

When to Use PLINQ

It's tempting to search your existing applicatidosLINQ queries and experiment with parallelizithgm.
This is usually unproductive, because most probliemahich LINQ is obviously the best solution teted
execute very quickly and so don't benefit from flatization. A better approach is to find a CPUeinsive
bottleneck and then consider, “Can this be expteasea LINQ query?” (A welcome side effect of such
restructuring is that LINQ typically makes code fieraand more readable.)

PLINQ is well suited to embarrassingly paralleligeons. It also works well for structured blockisglks, such
as calling several web services at once (see @dlliacking or 1/O-Intensive Functions).

PLINQ can be a poor choice for imaging, becauskatiog millions of pixels into an output sequenceates a
bottleneck. Instead, it's better to write pixelsedtly to an array or unmanaged memory block aredtius
Parallel class or task parallelism to manage the multittirea (It is possible, however, to defeat result
collation usingrorAll. Doing so makes sense if the algorithm naturaihdk itself to LINQ.)

Functional Purity

Because PLINQ runs your query on parallel thregds,must be careful not to perform thread-unsafratmons. In
particular, writing to variables Ede-effectingand therefore thread-unsafe:

// The following query multiplies each element by its position.

// Given an input of Enumerable.Range(0,999), it should output squares.

int i = 0;

var query = from n in Enumerable.Range(©,999).AsParallel() select n * i++;
We could make incrementingthread-safe by using locks Diiterlocked, but the problem would still remain thiat
won't necessarily correspond to the position ofitiait element. And addingsOrdered to the query wouldn't fix the
latter problem, becaugeOrdered ensures only that the elements are output in deraonsistent with them having
been processed sequentially—it doesn't actyaibcessthem sequentially.

Instead, this query should be rewritten to usdritlexed version ofelect:
var query = Enumerable.Range(0,999).AsParallel().Select ((n, i) => n * i);

For best performance, any methods called from gopeyators should be thread-safe by virtue of niing to fields or
properties (non-side-effecting, fumctionally puré. If they're thread-safe by virtue of locking, thaery’s parallelism
potential will be limited—by the duration of theclodivided by the total time spent in that function

Calling Blocking or I/O-Intensive Functions

Sometimes a query is long-running not becaus€Pt-intensive, but becausenitits on something—such as a web
page to download or some hardware to respond. Pld&iQeffectively parallelize such queries, provigihat you hint
it by callingWithDegreeOfParallelism afterAsParallel. For instance, suppose we want to ping six website
simultaneously. Rather than using clumsy asynchusielegates or manually spinning up six threadscam
accomplish this effortlessly with a PLINQ query:

from site in new[]

{
"www.albahari.com",
"www.lingpad.net",
"www.oreilly.com",
"www . google.com",
"www . takeonit.com",
"stackoverflow.com"

.AsParallel().WithDegreeOfParallelism(6)
let p = new Ping().Send (site)
select new
{
site,
Result = p.Status,
Time = p.RoundtripTime

}

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl.rights reserved. www.albahari.com/threading/ 92

WithDegreeOfParallelism forces PLINQ to run the specified number of tasiksultaneously. This is necessary
when calling blocking functions such Risng. Send because PLINQ otherwise assumes that the quéiypisintensive
and allocates tasks accordingly. On a two-core magclhor instance, PLINQ may default to runningyotwo tasks at
once, which is clearly undesirable in this situatio

PLINQ typically serves each task with a threadjectito allocation by the thread pool. You can taete the
initial ramping up of threads by callinghreadPool.SetMinThreads.

To give another example, suppose we were writingraeillance system and wanted to repeatedly cosnibiages
from four security cameras into a single compasitage for display on a CCTV. We'll represent a ceangith the
following class:

class Camera

{
public readonly int CameralID;
public Camera (int cameraID) { CameralD = cameralD; }

// Get image from camera: return a simple string rather than an image
public string GetNextFrame()

{
Thread.Sleep (123); // Simulate time taken to get snapshot
return "Frame from camera " + CameralD;

}
}

To obtain a composite image, we must GaltNextFrame on each of four camera objects. Assuming the diperas
I/0-bound, we can quadruple our frame rate witlafpelization—even on a single-core machine. PLINGkas this
possible with minimal programming effort:

Camera[] cameras = Enumerable.Range (0, 4) // Create 4 camera objects.
.Select (i => new Camera (i))
.ToArray();

while (true)

{
string[] data = cameras
.AsParallel().AsOrdered() .WithDegreeOfParallelism (4)
.Select (c => c.GetNextFrame()).ToArray();

Console.WriteLine (string.Join (", ", data)); // Display data...
}

GetNextFrame is a blocking method, so we usetithDegreeOfParallelismto get the desired concurrency. In our
example, the blocking happens when we €&dlep; in real life it would block because fetching amaige from a camera
is 1/0O- rather than CPU-intensive.

Calling Asordered ensures the images are displayed in a consistéat.dBecause there are only four
elements in the sequence, this would have a nbigigifect on performance.

Changing the degree of parallelism

You can callithDegreeOfParallelism only once within a PLINQ query. If you need toldahgain, you must force
merging and repartitioning of the query by callxgParallel() again within the query:

"The Quick Brown Fox"
.AsParallel().WithDegreeOfParallelism (2)
.Where (c => !char.IsWhiteSpace (c))
.AsParallel().WithDegreeOfParallelism (3) // Forces Merge + Partition
.Select (c => char.ToUpper (c))

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl.rights reserved. www.albahari.com/threading/ 93

Cancellation

Canceling a PLINQ query whose results you’re coriegrin aforeach loop is easy: simply break out of thereach
and the query will be automatically canceled asetin@merator is implicitly disposed.

For a query that terminates with a conversion, elgnor aggregation operator, you can cancel infamother thread
via a cancellation token. To insert a token, @atthCancellation after callingAisParallel, passing in th@oken
property of aCancellationTokenSource object. Another thread can then acalhcel on the token source, which
throws aroperationCanceledException on the query’s consumer:

IEnumerable<int> million = Enumerable.Range (3, 1000000);

var cancelSource = new CancellationTokenSource();

var primeNumberQuery =
from n in million.AsParallel().WithCancellation (cancelSource.Token)
where Enumerable.Range (2, (int) Math.Sgrt (n)).All (i =>n % i > 0)

select n;

new Thread (() => {

Thread.Sleep (109); // Cancel query after
cancelSource.Cancel(); // 100 milliseconds.
}
).Start();
try
{

// Start query running:
int[] primes = primeNumberQuery.ToArray();
// We'll never get here because the other thread will cancel us.

}

catch (OperationCanceledException)

{

Console.WriteLine ("Query canceled");

}

PLINQ doesn'’t preemptively abort threads, becadiskeodanger of doing so. Instead, upon cancefiatiovaits for
each worker thread to finish with its current eleteefore ending the query. This means that angreat methods that
the query calls will run to completion.

Optimizing PLINQ

Output-side optimization

One of PLINQ’s advantages is that it convenientifates the results from parallelized work intaregte output
sequence. Sometimes, though, all that you end ingddth that sequence is running some functioneamwer each
element:

foreach (int n in parallelQuery)
DoSomething (n);

If this is the case—and you don’t care about tlteepm which the elements are processed—you carowepefficiency
with PLINQ’s ForAll method.

TheForAll method runs a delegate over every output elenfembarallelQuery. It hooks right into PLINQ’s
internals, bypassing the steps of collating andverating the results.

Collating and enumerating results is not a masgi@rpensive operation, so therAll optimization yields the
greatest gains when there are large numbers oflguégecuting input elements.

To give a trivial example:
"abcdef" .AsParallel().Select (c => char.ToUpper(c)).ForAll (Console.Write);

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl.rights reserved. www.albahari.com/threading/ 94

ParallelEnumerable.Select

a | b |—>| A | B l—» Console.Write

Thread 1

| a | b | c | d | e | f } AsParallel] >| c | d |—>| C | D |—> Console.Write
' Thread 2

e | f |—>| E | F '—»Console.Write
Thread 3

"abcdef".AsParallel().Select (¢ => char.ToUpper(c)).ForAll (Console.Write)
Input-side optimization

PLINQ has three partitioning strategies for assigrninput elements to threads:

Strategy Element allocation Relative performance
Chunk partitioning Dynamic Average

Range patrtitioning Static Poor to excellent
Hash partitioning Static Poor

For query operators that require comparing elem@ntsupBy, Join, GroupJoin, Intersect, Except, Union, and
Distinct), you have no choice: PLINQ always usesh partitioning Hash partitioning is relatively inefficient ingh
it must precalculate the hashcode of every eleigsenthat elements with identical hashcodes carrdeepsed on the
same thread). If you find this too slow, your oafgtion is to calhAsSequential to disable parallelization.

For all other query operators, you have a choide aghether to use range or chunk partitioning.default:
« If the input sequence indexable(if it's an array or implementsList<T>), PLINQ choosesange partitioning
» Otherwise, PLINQ choosehunk partitioning

In a nutshell, range partitioning is faster withdosequences for which every element takes a sianf@unt of CPU
time to process. Otherwise, chunk partitioningseally faster.

To forcerange partitioning

* If the query starts witlinumerable.Range, replace the latter witharallelEnumerable.Range.

» Otherwise, simply calfoList or ToArray on the input sequence (obviously, this incursréopmance cost in
itself which you should take into account).

ParallelEnumerable.Range is not simply a shortcut for callirghumerable.Range(...).AsParallel().
It changes the performance of the query by actigatange partitioning.

To forcechunk partitioningwrap the input sequence in a calPtortitioner.Create (in
System.Collection.Concurrent) as follows:

int[] numbers = { 3, 4, 5, 6, 7, 8, 9 };

var parallelQuery =
Partitioner.Create (numbers, true).AsParallel()
.Where (...)

The second argument kartitioner.Create indicates that you want toad-balancehe query, which is another way
of saying that you want chunk partitioning.

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl.rights reserved. www.albahari.com/threading/ 95

] ®

Chunk
Partitioning

(With a chunk size of 1) e

la] o Jcfdfe]f

H_J
Range Y

Partitioning

AsParallel()

Chunk partitioning works by having each worker #ut@eriodically grab small “chunks” of elementsnfrthe input
sequence to process. PLINQ starts by allocating serall chunks (one or two elements at a time), thereases the
chunk size as the query progresses: this ensuaesrfall sequences are effectively parallelizedlarge sequences
don’t cause excessive round-tripping. If a workapens to get “easy” elements (that process quidklyill end up
getting more chunks. This system keeps every thegadlly busy (and the cores “balanced”); the adwnside is that
fetching elements from the shared input sequergqugnes synchronization (typically an exclusive Ipeland this can
result in some overhead and contention.

Range patrtitioning bypasses the normal input-siereration and preallocates an equal number ofegleso each
worker, avoiding contention on the input sequeBag.if some threads happen to get easy elementfirdsd early,
they sit idle while the remaining threads contimgrking. Our earlier prime number calculator migktform poorly
with range partitioning. An example of when rangetitioning would do well is in calculating the swhthe square
roots of the first 10 million integers:

ParallelEnumerable.Range (1, 10000000).Sum (i => Math.Sqrt (i))

ParallelEnumerable.Range returns earallelQuery<T>, SO you don't need to subsequently dalbarallel.

Range patrtitioning doesn’t necessarily allocatenelat ranges isontiguousblocks—it might instead choose
“striping” strategy. For instance, if there are tworkers, one worker might process odd-numberehethts
while the other processes even-numbered elememsiakeWhile operator is almost certain to trigger a
striping strategy to avoid unnecessarily processiegients later in the sequence.

Parallelizing Custom Aggregations

PLINQ parallelizes theum, Average, Min, andMax operators efficiently without additional intervemt. The
Aggregate operator, though, presents special challengeBIftHQ.

If you're unfamiliar with this operator, you carirtkh of Aggregate as a generalized version%fm, Average, Min, and
Max—in other words, an operator that lets you plug tustom accumulation algorithm for implementingsural
aggregations. The following demonstrates hi@gregate can do the work afum:

int[] numbers = { 2, 3, 4 };
int sum = numbers.Aggregate (0, (total, n) => total + n); // 9

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl.rights reserved. www.albahari.com/threading/ 96

The first argument taggregate is theseed from which accumulation starts. The second argunsean expression to
update the accumulated value, given a fresh elenfentcan optionally supply a third argument tojpot the final
result value from the accumulated value.

Most problems for whiclAggregate has been designed can be solved as easily Witheach loop—and
with more familiar syntax. The advantagerggregate is precisely that large or complex aggregatiomshz
parallelized declaratively with PLINQ.

Unseeded aggregations

You can omit the seed value when calligregate, in which case the first element becomesittingicit seed, and
aggregation proceeds from the second element. $idre’preceding examplenseeded

int[] numbers = { 1, 2, 3 };
int sum = numbers.Aggregate ((total, n) => total +n); // 6

This gives the same result as before, but we’neadlgtdoing adifferent calculation Before, we were calculating
0+1+2+3; now we're calculating 1+2+3. We can beittestrate the difference by multiplying insteaflanlding:

int[] numbers = { 1, 2, 3 };
int x = numbers.Aggregate (0, (prod, n) => prod * n); // 0*1*2*3 =@
int y = numbers.Aggregate ((prod, n) => prod * n); // 1*2*¥3 =6

As we'll see shortly, unseeded aggregations haz@dvantage of being parallelizable without reqgitihe use of
special overloads. However, there is a trap witbeeded aggregations: the unseeded aggregationdsett®intended
for use with delegates that amemmutativeandassociativelf used otherwise, the result is eithwintuitive (with
ordinary queries) anondeterministi¢in the case that you parallelize the query withN®). For example, consider the
following function:

(total, n) => total + n * n

This is neither commutative nor associative. (B@meple, 1+2*2 1= 2+1*1). Let's see what happens whe use it to
sum the square of the numbers 2, 3, and 4:

int[] numbers = { 2, 3, 4 };
int sum = numbers.Aggregate ((total, n) => total + n * n); // 27

Instead of calculating:
2%2 + 3%¥3 + 44 // 29

it calculates:
2 + 3*%3 + 4*%4 // 27

We can fix this in a number of ways. First, we cbiniclude O as the first element:
int[] numbers = { @, 2, 3, 4 };

Not only is this inelegant, but it will still givimcorrect results if parallelized—because PLINQelages the function’s
assumed associativity by selectimgltiple elements as seeds. To illustrate, if we denoteaggregation function as
follows:

f(total, n) => total + n * n

then LINQ to Objects would calculate this:
f(f(f(o, 2),3),4)

whereas PLINQ may do this:
£(£(0,2),f(3,4))

with the following result:

First partition: a =0 + 2*¥2 (= 4)

Second partition: b =3 + 4*4 (= 19)
Final result: a + b*» (= 365)
OR EVEN: b + a*a (= 35)

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl.rights reserved. www.albahari.com/threading/ 97

There are two good solutions. The first is to tilnis into a seeded aggregation—with zero as the. S only
complication is that with PLINQ, we’d need to usspecial overload in order for the query not tocexe sequentially
(as we'll see soon).

The second solution is to restructure the querh shiat the aggregation function is commutative assbciative:

int sum = numbers.Select (n => n * n).Aggregate ((total, n) => total + n);

Of course, in such simple scenarios you can (andldhuse thesum operator instead a@fggregate:
int sum = numbers.Sum (n => n * n);

You can actually go quite far just wiftum andAverage. For instance, you can useerage to calculate a
root-mean-square:

Math.Sqrt (numbers.Average (n => n * n))
and even standard deviation:

double mean
double sdev

numbers.Average();
Math.Sqrt (numbers.Average (n =>

double dif = n - mean;
return dif * dif;

1)
Both are safe, efficient and fully parallelizable.

Parallelizing Aggregate

We just saw that fonnseede@ggregations, the supplied delegate must be ags@cand commutative. PLINQ wiill
give incorrect results if this rule is violated chese it drawsultiple seedfrom the input sequence in order to
aggregate several partitions of the sequence simediusly.

Explicitly seeded aggregations might seem likefa sption with PLINQ, but unfortunately these oratiity execute
sequentially because of the reliance on a singld.SEo mitigate this, PLINQ provides another ovad@fAggregate
that lets you specify multiple seeds—or rathesead factory functiariFor each thread, it executes this function to
generate a separate seed, which becorttegad-localaccumulator into which it locally aggregates elatae

You must also supply a function to indicate hovedonbine the local and main accumulators. Finalig Aggregate
overload (somewhat gratuitously) expects a delegaperform any final transformation on the reguttu can achieve
this as easily by running some function on theltegurself afterward). So, here are the four dateg, in the order
they are passed:

seedFactory

Returns a new local accumulator
updateAccumulatorFunc

Aggregates an element into a local accumulator
combineAccumulatorFunc

Combines a local accumulator with the main accutoula
resultSelector

Applies any final transformation on the end result

In simple scenarios, you can specifyeged valuénstead of a seed factory. This tactic fails wtenseed is a
reference type that you wish to mutate, becauseah® instance will then be shared by each thread.

To give a very simple example, the following suims values in aumbers array:

numbers.AsParallel().Aggregate (

() => o, // seedFactory
(localTotal, n) => localTotal + n, // updateAccumulatorFunc
(mainTot, localTot) => mainTot + localTot, // combineAccumulatorFunc
finalResult => finalResult) // resultSelector

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl.rights reserved. www.albahari.com/threading/ 98

This example is contrived in that we could getsame answer just as efficiently using simpler apphes (such as an
unseeded aggregate, or better,2he operator). To give a more realistic example, ssppse wanted to calculate the
frequency of each letter in the English alphabet given string. A simple sequential solution milgiak like this:

string text = "Let’s suppose this is a really long string";
var letterFrequencies = new int[26];
foreach (char c in text)
{
int index = char.ToUpper (c) - 'A’;
if (index >= 0@ && index <= 26) letterFrequencies [index]++;

3

An example of when the input text might be verygasin gene sequencing. The “alphabet” would then
consist of the letters, c, g, andt.

To parallelize this, we could replace thereach statement with a call tearallel.ForEach (as we'll cover in the
following section), but this will leave us to dewith concurrency issues on the shared array. Ackimg around
accessing that array would all but kill the potahtdr parallelization.

Aggregate offers a tidy solution. The accumulator, in thise, is an array just like thetterFrequencies array in
our preceding example. Here's a sequential venggimgAggregate:

int[] result =
text.Aggregate (

new int[26], // Create the "accumulator"
(letterFrequencies, c) => // Aggregate a letter into the accumulator
{

int index = char.ToUpper (c) - 'A‘;
if (index >= © &% index <= 26) letterFrequencies [index]++;
return letterFrequencies;

1
And now the parallel version, using PLINQ’s speciaérload:

int[] result =
text.AsParallel().Aggregate (

() => new int[26], // Create a new local accumulator
(localFrequencies, c) => // Aggregate into the local accumulator
{

int index = char.ToUpper (c) - 'A‘;
if (index >= © && index <= 26) localFrequencies [index]++;
return localFrequencies;
1
// Aggregate local->main accumulator
(mainFreq, localFreq) =>
mainFreq.Zip (localFreq, (f1, f2) => f1 + f2).ToArray(),

finalResult => finalResult // Perform any final transformation
)s // on the end result.

Notice that the local accumulation functiorutateshelocalFrequencies array. This ability to perform this
optimization is important—and is legitimate becalisealFrequencies is local to each thread.

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl.rights reserved. www.albahari.com/threading/ 99

The Parallel Class

PFX provides a basic form of structured parallelisanthree static methods in therallel class:

Parallel.Invoke
Executes an array of delegates in parallel

Parallel.For

Performs the parallel equivalent of a €# loop
Parallel.ForEach

Performs the parallel equivalent of a €#each loop

All three methods block until all work is completes with PLINQ, after an unhandled exception, rarireg workers
are stopped after their current iteration and teeption (or exceptions) are thrown back to théecatwrapped in an
AggregateException.

Parallel.Invoke

Parallel.Invoke executes an array aftion delegates in parallel, and then waits for themmoimplete. The simplest
version of the method is defined as follows:

public static void Invoke (params Action[] actions);
Here’s how we can usarallel.Invoke to download two web pages at once:

Parallel.Invoke (
() => new WebClient().DownloadFile ("http://www.lingpad.net", "lp.html"),
() => new WebClient().DownloadFile ("http://www.jaoo.dk", "jaoo.html"));

On the surface, this seems like a convenient shiofiee creating and waiting on twiask objects (or asynchronous
delegates). But there’s an important differemzarallel. Invoke still works efficiently if you pass in an array af
million delegates. This is becaus@drtitionslarge numbers of elements into batches whichsigas to a handful of
underlyingTasks—rather than creating a separedek for each delegate.

As with all ofParallel’s methods, you're on your own when it comes tdatimlg the results. This means you need to
keep thread safety in mind. The following, for arste, is thread-unsafe:

var data = new List<string>();

Parallel.Invoke (

() => data.Add (new WebClient().DownloadString ("http://www.foo.com")),
() => data.Add (new WebClient().DownloadString ("http://www.far.com")));

Locking around adding to the list would resolvesttdlthough locking would create a bottleneck ifi yad a much
larger array of quickly executing delegates. Adretblution is to use the thread-safe collectibias we cover in C# 4.0
in a Nutshell-€oncurrentBag would be ideal in this case (see “Concurrent Ctiheis”).

Parallel.Invoke is also overloaded to acceptarallelOptions object:

public static void Invoke (ParallelOptions options,
params Action[] actions);

With ParallelOptions, you can insert a cancellation token, limit theximaum concurrency, and specify a custom
task scheduler. A cancellation token is relevargmiou’re executing (roughly) more tasks than yauehcores: upon
cancellation, any unstarted delegates will be abaed. Any already-executing delegates will, howewgentinue to
completion. See Cancellation for an example of tmwse cancellation tokens.

Parallel.For and Parallel.ForEach

Parallel.For andParallel.ForEach perform the equivalent of a G#r andforeach loop, but with each iteration
executing in parallel instead of sequentially. Here their (simplest) signatures:

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl. ights reserved. www.albahari.com/threading/ 100

public static ParallellLoopResult For (
int fromInclusive, int toExclusive, Action<int> body)

public static ParallelLoopResult ForEach<TSource> (
IEnumerable<TSource> source, Action<TSource> body)

The following sequentiafor loop:

for (int i = @; i < 100; i++)
Foo (i);

is parallelized like this:

Parallel.For (0, 100, i => Foo (i));
or more simply:

Parallel.For (0, 100, Foo);
And the following sequentialoreach:

foreach (char c¢ in "Hello, world")
Foo (c);

is parallelized like this:
Parallel.ForEach ("Hello, world", Foo);

To give a practical example, if we import thestem.Security.Cryptography namespace, we can generate Six
public/private key-pair strings in parallel as folls:

var keyPairs = new string[6];

Parallel.For (@, keyPairs.Length,
i => keyPairs[i] = RSA.Create().ToXmlString (true));

As withParallel.Invoke, we can fee@arallel.For andParallel.ForEach a large number of work items and
they'll be efficiently partitioned onto a few tasks

The latter query could also be done with PLINQ:

string[] keyPairs =
ParallelEnumerable.Range (0, 6)
.Select (i => RSA.Create().ToXmlString (true))
.ToArray();

Outer versus inner loops

Parallel.For andParallel.ForEach usually work best on outer rather than inner lodjss is because with the
former, you're offering larger chunks of work torpbelize, diluting the management overhead. Pealiaihg both inner
and outer loops is usually unnecessary. In thevietlg example, we’d typically need more than 10@esdo benefit
from the inner parallelization:

Parallel.For (0, 100, i =>

{
Parallel.For (@, 50, j => Foo (i, j)); // Sequential would be better
s // for the inner loop.

Indexed Parallel.ForEach

Sometimes it's useful to know the loop iteratioder. With a sequentidgoreach, it's easy:

int i = 0;
foreach (char c in "Hello, world")
Console.WriteLine (c.ToString() + i++);

Incrementing a shared variable, however, is n@zatirsafe in a parallel context. You must insteadtiis following
version ofForEach:

public static ParallelLoopResult ForEach<TSource> (
IEnumerable<TSource> source, Action<TSource,ParallelloopState,long> body)

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl. ights reserved. www.albahari.com/threading/ 101

We'll ignoreParallelloopState (which we’ll cover in the following section). Fapw, we're interested inction’s
third type parameter of typiong, which indicates the loop index:

Parallel.ForEach ("Hello, world", (c, state, i) =>

{
Console.WriteLine (c.ToString() + i);

s

To put this into a practical context, we’'ll revisiite spellchecker that we wrote with PLINQ. Thddaing code loads
up a dictionary along with an array of a millionnds to test:

if (!File.Exists ("WordLookup.txt")) // Contains about 150,000 words
new WebClient().DownloadFile (
"http://www.albahari.com/ispell/allwords.txt", "WordLookup.txt");

var wordLookup = new HashSet<string> (
File.ReadAllLines ("WordLookup.txt"),
StringComparer.InvariantCultureIgnoreCase);

var random = new Random();
string[] wordList = wordLookup.ToArray();

string[] wordsToTest = Enumerable.Range (0, 1000000)
.Select (i => wordList [random.Next (@, wordList.Length)])

.ToArray();
wordsToTest [12345] = "woozsh"; // Introduce a couple
wordsToTest [23456] = "wubsie"; // of spelling mistakes.

We can perform the spellcheck on ewrdsToTest array using the indexed versionRafrallel.ForEach as follows:

var misspellings = new ConcurrentBag<Tuple<int,string>>();

Parallel.ForEach (wordsToTest, (word, state, i) =>

{

if (!wordLookup.Contains (word))
misspellings.Add (Tuple.Create ((int) i, word));
s

Notice that we had to collate the results intoradld-safe collection: having to do this is the digatage when
compared to using PLINQ. The advantage over PLI8IDat we avoid the cost of applying an indegetlect query
operator—which is less efficient than an indegkedEach.

ParallelLoopState: Breaking early out of loops

Because the loop body in a parallel or ForEach is a delegate, you can't exit the loop early veithreak statement.
Instead, you must caireak or Stop on aParallelloopState object:

public class ParallelloopState
{

public void Break();

public void Stop();

public bool IsExceptional { get; }

public bool IsStopped { get; }

public long? LowestBreakIteration { get; }
public bool ShouldExitCurrentIteration { get; }

}

Obtaining aParallellLoopState is easy: all versions ¢for andForEach are overloaded to accept loop bodies of type
Action<TSource,ParallelloopState>. So, to parallelize this:

foreach (char c in "Hello, world")
if (c=","
break;
else
Console.Write (c);

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl. ights reserved. www.albahari.com/threading/ 102

do this:

Parallel.ForEach ("Hello, world", (c, loopState) =>
{

if (c=","
loopState.Break();
else
Console.Write (c);

s

// OUTPUT: Hlloe

You can see from the output that loop bodies mampdete in a random order. Aside from this differencallingBreak
yieldsat leastthe same elements as executing the loop sequentiaé example will always outpuatt leastthe letters
H, e I, 1, ando in some order. In contrast, callisgjop instead oBreak forces all threads to finish right after their
current iteration. In our example, calliagop could give us a subset of the lettels, |, I, ando if another thread was
lagging behind. Callingtop is useful when you've found something that youdeking for—or when something has
gone wrong and you won't be looking at the results.

TheParallel.For andParallel.ForEach methods return BarallelloopResult object that exposes
properties calledsCompleted andLowestBreakIteration. These tell you whether the loop ran to
completion, and if not, at what cycle the loop \wasken.

If LowestBreakIteration returns null, it means that you callgtbp (rather tharBreak) on the loop.

If your loop body is long, you might want otherdhds to break partway through the method bodyse oaan early
Break or Stop. You can do this by polling théhouldExitCurrentIteration property at various places in your
code; this property becomes true immediately afterop—or soon after &reak.

ShouldExitCurrentIteration also becomes true after a cancellation requesif-aorexception is thrown
in the loop.

IsExceptional lets you know whether an exception has occurrednmther thread. Any unhandled exception will
cause the loop to stop after each thread’s cuitemnation: to avoid this, you must explicitly haadixceptions in your
code.

Optimization with local values

Parallel.For andParallel.ForEach each offer a set of overloads that feature a gehgre argument called
TLocal. These overloads are designed to help you optithzeollation of data with iteration-intensive pso The
simplest is this:

public static ParallellLoopResult For <TLocal> (
int fromInclusive,
int toExclusive,
Func <TLocal> locallnit,
Func <int, ParallelloopState, TLocal, TLocal> body,
Action <TLocal> localFinally);

These methods are rarely needed in practice betlagis¢arget scenarios are covered mostly by PL{N®Qich is
fortunate because these overloads are somewhatdating!).

Essentially, the problem is this: suppose we wasuim the square roots of the numbers 1 throudd00MO0.
Calculating 10 million square roots is easily piladable, but summing their values is troublesdrmeause we must
lock around updating the total:

object locker = new object();
double total = 0;
Parallel.For (1, 10000000,
i => { lock (locker) total += Math.Sgrt (i); });

The gain from parallelization is more than offsgtthe cost of obtaining 10 million locks—plus thesultant blocking.

The reality, though, is that we don’t actuallged10 million locks. Imagine a team of volunteersipig up a large
volume of litter. If all workers shared a singlagh can, the travel and contention would make thegss extremely

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl. ights reserved. www.albahari.com/threading/ 103

inefficient. The obvious solution is for each warke have a private or “local” trash can, whiclocasionally emptied
into the main bin.

TheTLocal versions ofor andForEach work in exactly this way. The volunteers are intdmworker threads, and the
local valuerepresents a local trash can. In orderPforallel to do this job, you must feed it two additionaledmtes
that indicate:

1. How to initialize a new local value
2. How to combine a local aggregation with the magtdue

Additionally, instead of the body delegate retugninid, it should return the new aggregate for the loadlie. Here’s
our example refactored:

object locker = new object();
double grandTotal = ©;

Parallel.For (1, 10000000,
() => 0.9, // Initialize the local value.

(i, state, localTotal) => // Body delegate. Notice that it
localTotal + Math.Sqgrt (i), // returns the new local total.

localTotal => // Add the local value
{ lock (locker) grandTotal += localTotal; } // to the master value.

)s

We must still lock, but only around aggregating liteal value to the grand total. This makes theepss dramatically
more efficient.

As stated earlier, PLINQ is often a good fit ingbescenarios. Our example could be parallelizeld RIINQ
simply like this:

ParallelEnumerable.Range (1, 10000000)
.Sum (i => Math.Sqrt (i))

(Notice that we usedarallelEnumerable to forcerange partitioning this improves performance in this case
because all numbers will take equally long to pssce

In more complex scenarios, you might use LIN@gregate operator instead cfum. If you supplied a local
seed factory, the situation would be somewhat guais to providing a local value function with
Parallel.For.

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl. ights reserved. www.albahari.com/threading/ 104

Task Parallelism

Task parallelismis the lowest-level approach to parallelizatiothv®FX. The
classes for working at this level are defined m3fistem. Threading. Tasks
namespace and comprise the following:

Class Purpose

Task For managing a unit for work

Task<TResult> For managing a unit for work with a return value

TaskFactory For creating tasks

TaskFactory<TResult> For creating tasks and continuations with the sam
return type

TaskScheduler For managing the scheduling of tasks

TaskCompletionSource For manually controlling a task’s workflow

Essentially, a task is a lightweight object for mgimg a parallelizable unit of
work. A task avoids the overhead of starting a daigid thread by using the
CLR’s thread pool: this is the same thread pootluse
ThreadPool.QueueUserWorkItem, tweaked in CLR 4.0 to work more
efficiently with Tasks (and more efficiently in general).

Tasks can be used whenever you want to executetlsimgnén parallel. However,
they’retunedfor leveraging multicores: in fact, tlterallel class and PLINQ
are internally built on the task parallelism cousts.

Tasks do more than just provide an easy and gffieiay into the thread pool.
They also provide some powerful features for mamgginits of work, including
the ability to:

e Tune atask’s scheduling

» Establish a parent/child relationship when one tastarted from another
» Implement cooperative cancellation

» Wait on a set of tasks—without a signaling congtruc

 Attach “continuation” task(s)

» Schedule a continuation based on multiple ante¢edsks

» Propagate exceptions to parents, continuationstaakdconsumers

Get the whole book

Ch1: Introducing C#

Ch2: C# Language Basics
Ch3: Creating Types in C#
Ch4: Advanced C# Features
Ch5: Framework Fundamentals
Ch7: Collections

Ch8: LINQ Queries

Ch9: LINQ Operators

Ch1o:
Chi1:
Chil2:
Ch13:
Chi4:
Ch15:
Chie:
Chi7:
Ch18:
Ch19
Ch20:
Ch21:
Ch22:
Ch23:
Ch24:
Ch25:
Ch26:

C#

LINQ to XML

Other XML Technologies
Disposal & Garbage Collection
Code Contracts & Diagnostics
Streams & 1/O

Networking

Serialization

Assemblies

Reflection & Metadata

: Dynamic Programming

Security

Threading

Parallel Programming
Asynchronous Methods
Application Domains
Native and COM Interop
Regular Expressions

4.0 in a Nutshell

www.albahari.com/nutshell

Tasks also implemeiibcal work queuesan optimization that allows you to efficientlyeate many quickly executing
child tasks without incurring the contention oveatiehat would otherwise arise with a single work !

efficiency. TheParallel class and PLINQ do this automatically.

The Task Parallel Library lets you create hund(@d®ven thousands) of tasks with minimal overh&ad.if
you want to create millions of tasks, you'll needpartition those tasks into larger work units taimtain

Visual Studio 2010 provides a new window for morniitg tasks (Debug | Window | Parallel Tasks). This
equivalent to the Threads window, but for taskse Plarallel Stacks window also has a special mod@aéis.

Creating and Starting Tasks

As we described in Part 1 in our discussion ofatrpooling, you can create and startak by calling

Task.Factory.StartNew, passing in aAction delegate:
Task.Factory.StartNew (() => Console.WriteLine ("Hello from a task!"));

The generic versiomask<TResult> (a subclass ofask), lets you get data back from a task upon conypieti

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl.rights reserved. www.albahari.com/threading/

105

Task<string> task = Task.Factory.StartNew<string> (() => // Begin task
{

using (var wc = new System.Net.WebClient())
return wc.DownloadString ("http://www.lingpad.net");

s

RunSomeOtherMethod() ; // We can do other work in parallel...

string result = task.Result; // Wait for task to finish and fetch result.

Task.Factory.StartNew creates and starts a task in one step. You caiugkrthese operations by first instantiating
aTask object, and then callingtart:

var task = new Task (() => Console.Write ("Hello"));

task.Start();

A task that you create in this manner can alsaihesynchronously (on the same thread) by callingsynchronously
instead ofStart.

You can track a task’s execution status vigitstus property.

Specifying a state object

When instantiating a task or callingsk.Factory.StartNew, you can specify atateobject, which is passed to the
target method. This is useful should you want tbacanethod directly rather than using a lambdareggion:

static void Main()

{
var task = Task.Factory.StartNew (Greet, "Hello");

task.Wait(); // Wait for task to complete.
b

static void Greet (object state) { Console.Write (state); } // Hello

Given that we have lambda expressions in C#, weuoathestateobject to better use, which is to assign a meduing
name to the task. We can then usethgncState property to query its name:

static void Main()

{
var task = Task.Factory.StartNew (state => Greet ("Hello"), "Greeting");

Console.WritelLine (task.AsyncState); // Greeting
task.Wait();
¥

static void Greet (string message) { Console.Write (message); }

Visual Studio displays each tasksyncState in the Parallel Tasks window, so having a meanihgame
here can ease debugging considerably.

TaskCreationOptions

You can tune a task’s execution by specifyingpakCreationOptions enum when callingtartNew (or instantiating
aTask). TaskCreationOptions is a flags enum with the following (combinable)ues:

LongRunning
PreferFairness
AttachedToParent

LongRunning suggests to the scheduler to dedicate a threthe tiask. This is beneficial for long-running tableszause
they might otherwise “hog” the queue, and forcershmning tasks to wait an unreasonable amoutitrad before
being scheduled.ongRunning is also good for blocking tasks.

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl. ights reserved. www.albahari.com/threading/ 106

The task queuing problem arises because the taskigler ordinarily tries to keep just enough tesitive on
threads at once to keep each CPU core busyoWotsubscribinghe CPU with too many active threads avoifls
the degradation in performance that would occthiéfoperating system was forced to perform a lot of
expensive time slicing and context switching.

PreferFairness tells the scheduler to try to ensure that taskssaheduled in the order they were started. It may
ordinarily do otherwise, because it internally apsies the scheduling of tasks using local workistgajueues. This
optimization is of practical benefit with very sihfine-grained) tasks.

AttachedToParent is for creatingchild tasks

Child tasks

When one task starts another, you can optionathbéish a parent-child relationship by specifying
TaskCreationOptions.AttachedToParent

Task parent = Task.Factory.StartNew (() =>
{

Console.WriteLine ("I am a parent");

Task.Factory.StartNew (() => // Detached task
{
Console.WriteLine ("I am detached");
s
Task.Factory.StartNew (() => // Child task
{

Console.WriteLine ("I am a child");
}, TaskCreationOptions.AttachedToParent);

s

A child task is special in that when you wait fbeparenttask to complete, it waits for any children aslwehis can
be particularly useful when a child task is a comdition, as we’ll see shortly.

Waiting on Tasks

You can explicitly wait for a task to complete wat ways:

e Calling itsWait method (optionally with a timeout)
» Accessing itResult property (in the case gfisk<TResult>)

You can also wait on multiple tasks at once—viadtadic method3ask.waitAll (waits for all the specified tasks to
finish) andTask.WaitAny (waits for just one task to finish).

WaitAll is similar to waiting out each task in turn, baimore efficient in that it requires (at most) jose context
switch. Also, if one or more of the tasks throwuarhandled exceptiomaitAll still waits out every task—and then
rethrows a singléggregateException that accumulates the exceptions from each fatdteld It's equivalent to doing
this:

// Assume t1, t2 and t3 are tasks:

var exceptions = new List<Exception>();

try { tl.Wait(); } catch (AggregateException ex) { exceptions.Add (ex); }
try { t2.Wait(); } catch (AggregateException ex) { exceptions.Add (ex); }
try { t3.Wait(); } catch (AggregateException ex) { exceptions.Add (ex); }
if (exceptions.Count > @) throw new AggregateException (exceptions);

CallingwWaitAny is equivalent to waiting onManualResetEventSlim that's signaled by each task as it finishes.

As well as a timeout, you can also pass in a ctatimel token to th@lait methods: this lets you cancel the waitet
the task itself

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl. ights reserved. www.albahari.com/threading/ 107

Exception-Handling Tasks

When you wait for a task to complete (by callirghigit method or accessing ike@sult property), any unhandled
exceptions are conveniently rethrown to the calleapped in amggregateException object. This usually avoids the
need to write codwithin task blocks to handle unexpected exceptions;adsie can do this:

int x = 0;
Task<int> calc = Task.Factory.StartNew (() => 7 / x);
try
{
Console.WriteLine (calc.Result);
¥

catch (AggregateException aex)

Console.Write (aex.InnerException.Message); // Attempted to divide by ©

}

You still need to exception-handle detached autanenasks (unparented tasks that are not waitex) up@rder to
prevent an unhandled exception taking down theiegan when the task drops out of scope and isagg-collected
(subject to the following note). The same appl@stésks waited upon with a timeout, because angmion thrown
after the timeout interval will otherwise be “unhandled.

The staticTaskScheduler.UnobservedTaskException event provides a final last resort for dealinghwit
unhandled task exceptions. By handling this ewani,can intercept task exceptions that would otisaend
the application—and provide your own logic for deglwith them.

For parented tasks, waiting on the parent implicitaits on the children—and any child exceptiorentbubble up:

TaskCreationOptions atp = TaskCreationOptions.AttachedToParent;
var parent = Task.Factory.StartNew (() =>

{
Task.Factory.StartNew (() => // Child
{
Task.Factory.StartNew (() => { throw null; }, atp); // Grandchild
}, atp);
s

// The following call throws a NullReferenceException (wrapped
// in nested AggregateExceptions):
parent.Wait();

Interestingly, if you check a taskisception property after it has thrown an exception, thecdiceading that
property will prevent the exception from subseqlyetatking down your application. The rationalehsit
PFX’s designers don’t want yegnoring exceptions—as long as you acknowledge them in seaye they
won't punish you by terminating your program.

An unhandled exception on a task doesn’t camseediateapplication termination: instead, it's delayedilunt
the garbage collector catches up with the taskcaiid its finalizer. Termination is delayed becaiismn’'t be
known for certain that you don't plan to callit or check itResult or Exception property until the task is
garbage-collected. This delay can sometimes misjieads to the original source of the error (altfio¥isual
Studio’s debugger can assist if you enable breasinfirst-chance exceptions).

As we’'ll see soon, an alternative strategy for ithgalvith exceptions is with continuations.

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl. ights reserved. www.albahari.com/threading/ 108

Canceling Tasks

You can optionally pass in a cancellation token mvsiarting a task. This lets you cancel taskshgacboperative
cancellation pattern described previously:

var cancelSource = new CancellationTokenSource();
CancellationToken token = cancelSource.Token;

Task task = Task.Factory.StartNew (() =>

{
// Do some stuff...
token.ThrowIfCancellationRequested(); // Check for cancellation request
// Do some stuff...

}, token);

cancelSource.Cancel();
To detect a canceled task, catcmgpregateException and check the inner exception as follows:

try

task.Wait();

}
catch (AggregateException ex)

if (ex.InnerException is OperationCanceledException)
Console.Write ("Task canceled!");

}

If you want to explicitly throw a®perationCanceledException (rather than calling
token.ThrowIfCancellationRequested), you must pass the cancellation token into
OperationCanceledException’s constructor. If you fail to do this, the taskmibend up with a
TaskStatus.Canceled status and won't triggemlyOnCanceled continuations.

If the task is canceled before it has startedpit'tvget scheduled—abperationCanceledException will instead be
thrown on the task immediately.

Because cancellation tokens are recognized by é&ks, you can pass them into other constructscandellations will
propagate seamlessly:

var cancelSource = new CancellationTokenSource();
CancellationToken token = cancelSource.Token;

Task task = Task.Factory.StartNew (() =>
{

// Pass our cancellation token into a PLINQ query:
var query = someSequence.AsParallel().WithCancellation (token)...
... enumerate query ...

s
Calling Cancel oncancelSource in this example will cancel the PLINQ query, whigill throw an
OperationCanceledException on the task body, which will then cancel the task.

The cancellation tokens that you can pass into oastsuch agait andCancelAndWait allow you to cancel
thewait operation and not the task itself.

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl. ights reserved. www.albahari.com/threading/ 109

Continuations

Sometimes it's useful to start a task right aftesther one completes (or fails). ThentinueWwith method on th&ask
class does exactly this:

Task taskl = Task.Factory.StartNew (() => Console.Write ("antecedant.."));
Task task2 = taskl.ContinueWith (ant => Console.Write ("..continuation"));

As soon agaskl (theantecedentfinishes, fails, or is canceletlask2 (thecontinuatior) automatically starts. (If
taskl1 had completed before the second line of codetask2 would be scheduled to execute right away.) die
argument passed to the continuation’s lambda egjmess a reference to the antecedent task.

Our example demonstrated the simplest kind of aoiation, and is functionally similar to the follavg:

Task task = Task.Factory.StartNew (() =>
{

Console.Write ("antecedent..");
Console.Write ("..continuation");

s

The continuation-based approach, however, is niexéfe in that you could first wait otask1, and then later wait on
task2. This is particularly useful ifask1 returns data.

Another (subtler) difference is that by defaultiesr@dent and continuation tasks may execute oerdift
threads. You can force them to execute on the shread by specifying
TaskContinuationOptions.ExecuteSynchronously when callingContinueWith: this can improve
performance in very fine-grained continuations ésskning indirection.

Continuations and Task<TResult>

Just like ordinary tasks, continuations can beypétTask<TResult> and return data. In the following example, we
calculateMath.Sqrt(8*2) using a series of chained tasks and then writ¢heutesult:

Task.Factory.StartNew<int> (() => 8)
.ContinueWith (ant => ant.Result * 2)
.ContinueWith (ant => Math.Sqrt (ant.Result))
.ContinueWith (ant => Console.WriteLine (ant.Result)); // 4

Our example is somewhat contrived for simplicityréal life, these lambda expressions would catipatationally
intensive functions.

Continuations and exceptions

A continuation can find out if an exception wasthin by the antecedent via the antecedent tasi¢sption property.
The following writes the details ofMul1ReferenceException to the console:

Task taskl = Task.Factory.StartNew (() => { throw null; });
Task task2 = taskl.ContinueWith (ant => Console.Write (ant.Exception));

If an antecedent throws and the continuation failguery the antecedentsception property (and the
antecedent isn’t otherwise waited upon), the exerps considered unhandled and the applicatios (ialess
handled byraskScheduler.UnobservedTaskException).

A safe pattern is to rethrow antecedent exceptidagong as the continuationlisited upon, the exception will be
propagated and rethrown to theiter:

Task continuation = Task.Factory.StartNew (() => { throw null; })
.ContinueWith (ant =>

{

if (ant.Exception != null) throw ant.Exception;
// Continue processing...

s

continuation.Wait(); // Exception is now thrown back to caller.

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl. ights reserved. www.albahari.com/threading/ 110

Another way to deal with exceptions is to speciffedent continuations for exceptional versus nareptional
outcomes. This is done wittaskContinuationOptions:

Task taskl = Task.Factory.StartNew (() => { throw null; });

Task error = taskl.ContinueWith (ant => Console.Write (ant.Exception),
TaskContinuationOptions.OnlyOnFaulted);

Task ok = taskl.ContinueWith (ant => Console.Write ("Success!"),
TaskContinuationOptions.NotOnFaulted);

This pattern is particularly useful in conjunctiaith child tasks, as we’ll see very soon.
The following extension method “swallows” a tasldishandled exceptions:

public static void IgnoreExceptions (this Task task)

{

task.ContinueWith (t => { var ignore = t.Exception; },
TaskContinuationOptions.OnlyOnFaulted);

¥
(This could be improved by adding code to log theeption.) Here’s how it would be used:
Task.Factory.StartNew (() => { throw null; }).IgnoreExceptions();

Continuations and child tasks

A powerful feature of continuations is that thegkdff only when all child tasks have completed tit point, any

exceptions thrown by the children are marshalegtieacontinuation.

In the following example, we start three child mséach throwing Bul1lReferenceException. We then catch all of

them in one fell swoop via a continuation on theepa

TaskCreationOptions atp = TaskCreationOptions.AttachedToParent;
Task.Factory.StartNew (() =>

{
Task.Factory.StartNew (() => { throw null; }, atp);

Task.Factory.StartNew (() => { throw null; }, atp);
Task.Factory.StartNew (() => { throw null; }, atp);

1))

.ContinueWith (p => Console.WritelLine (p.Exception),
TaskContinuationOptions.OnlyOnFaulted);

ContinueWhenAll
Simple continuation Antecedent |
| Antecedent | Continuation | Continuation
Antecedent 2
Multiple continuations ContinueWhenAny

Continuation 1 |Antecedent1 | Continuation |
| Antecedent
Continuation 2 Antecedent 2

Continuation with child tasks

| Parent Task i- cccccee Continuation on Parent |

b Child Task |

s Child Task |

time

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl.rights reserved. www.albahari.com/threading/

111

Conditional continuations

By default, a continuation is scheduledconditionally—whether the antecedent completes, throws an drcer is
canceled. You can alter this behavior via a sétambinable) flags included within th@skContinuationOptions
enum. The three core flags that control conditiamaaitinuation are:

NotOnRanToCompletion = 0x10000,
NotOnFaulted = 0x20000,
NotOnCanceled = 0x40000,

These flags are subtractive in the sense that tre gou apply, the less likely the continuatiotoi®xecute. For
convenience, there are also the following precostbialues:

OnlyOnRanToCompletion = NotOnFaulted | NotOnCanceled,
OnlyOnFaulted = NotOnRanToCompletion | NotOnCanceled,
OnlyOnCanceled = NotOnRanToCompletion | NotOnFaulted

(Combining all theNot* flags NotOnRanToCompletion, NotOnFaulted, NotOnCanceled] is nonsensical, as it would
result in the continuation always being canceled.)

“RanToCompletion” means the antecedent succeedetheuticancellation or unhandled exceptions.
“Faulted” means an unhandled exception was throwthe antecedent.
“Canceled” means one of two things:

» The antecedent was canceled via its cancellatiemtdn other words, abperationCanceledException was
thrown on the antecedent—whaSencellationToken property matched that passed to the antecedemt iivhe
was started.

» The antecedent was implicitly canceled becaudin’t satisfy a conditional continuation predieat

It's essential to grasp that when a continuatioesti&t execute by virtue of these flags, the comtiimn is not forgotten
or abandoned—it'sanceled This means that any continuations on the contionatselfwill then run—unless you
predicate them witNotOnCanceled. For example, consider this:

Task t1 = Task.Factory.StartNew (...);

Task fault = t1.ContinueWith (ant => Console.WritelLine ("fault"),
TaskContinuationOptions.OnlyOnFaulted);

Task t3 = fault.ContinueWith (ant => Console.WriteLine ("t3"));

As it standst3 will always get scheduled—eventf doesn’t throw an exception. This is becaugelifucceeds, the
fault task will becanceledand with no continuation restrictions placedtent3 will then execute unconditionally.

fault t3

1 _ fault >

Y

If we wantt3 to execute only ifault actually runs, we must instead do this:

Task t3 = fault.ContinueWith (ant => Console.WritelLine ("t3"),
TaskContinuationOptions.NotOnCanceled);

(Alternatively, we could specifgnlyOnRanToCompletion; the difference is that3 would not then execute if an
exception was thrown withifiault.)

Continuations with multiple antecedents

Another useful feature of continuations is that gan schedule them to execute based on the completimultiple
antecedentLontinueWhenAll schedules execution when all antecedents havele@dpContinueWhenAny
schedules execution when one antecedent compBxésmethods are defined in theskFactory class:

var taskl = Task.Factory.StartNew (() => Console.Write ("X"));
var task2 = Task.Factory.StartNew (() => Console.Write ("Y"));

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl. ights reserved. www.albahari.com/threading/ 112

var continuation = Task.Factory.ContinueWhenAll (
new[] { taskl, task2 }, tasks => Console.WriteLine ("Done"));

This writes “Done” after writing “XY” or “YX”. Thetasks argument in the lambda expression gives you adogbe
array of completed tasks, which is useful whenati@cedents return data. The following example sagksther
numbers returned from two antecedent tasks:

// taskl and task2 would call complex functions in real life:
Task<int> taskl = Task.Factory.StartNew (() => 123);
Task<int> task2 = Task.Factory.StartNew (() => 456);

Task<int> task3 = Task<int>.Factory.ContinuelWhenAll (
new[] { taskl, task2 }, tasks => tasks.Sum (t => t.Result));

Console.WriteLine (task3.Result); // 579

We've included theint> type argument in our call ttask.Factory in this example to clarify that we're
obtaining a generic task factory. The type argunenhnecessary, though, as it will be inferredhwsy
compiler.

Multiple continuations on a single antecedent

Calling ContinueWith more than once on the same task creates multiplénciations on a single antecedent. When
the antecedent finishes, all continuations wilftsiagether (unless you specify
TaskContinuationOptions.ExecuteSynchronously, in which case the continuations will execute saqjially).

The following waits for one second, and then wragker “XY” or “YX":

var t = Task.Factory.StartNew (() => Thread.Sleep (1009));
t.ContinueWith (ant => Console.Write ("X"));
t.ContinueWith (ant => Console.Write ("Y"));

Task Schedulers and Uls

A task scheduleallocates tasks to threads. All tasks are assatiaith a task scheduler, which is representedby t
abstractraskScheduler class. The Framework provides two concrete impigai®ns: thedefault schedulethat

works in tandem with the CLR thread pool, andgiuechronization context schedul&he latter is designed (primarily)
to help you with the threading model of WPF and dléws Forms, which requires that Ul elements androtsare
accessed only from the thread that created themexample, suppose we wanted to fetch some datadraeb service
in the background, and then update a WPF labedatatilResult with its result. We can divide this into two tasks

1. Call a method to get data from the web servicee@uent task).
2. UpdatelblResult with the results (continuation task).

If, for a continuation task, we specify thgnchronization context schedutdstained when the window was constructed,
we can safely updafib1Result:

public partial class MyWindow : Window

{

TaskScheduler _uiScheduler; // Declare this as a field so we can use
// it throughout our class.
public MyWindow()

{

InitializeComponent();

// Get the UI scheduler for the thread that created the form:
_uiScheduler = TaskScheduler.FromCurrentSynchronizationContext();

Task.Factory.StartNew<string> (SomeComplexWebService)
.ContinuelWith (ant => 1blResult.Content = ant.Result, _uiScheduler);

}

string SomeComplexWebService() { ... }

}

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl. ights reserved. www.albahari.com/threading/ 113

It's also possible to write our own task sched(isr subclassingaskScheduler), although this is something you'd do
only in very specialized scenarios. For custom gdaheg, you’d more commonly uSaskCompletionSource, which
we’ll cover soon.

TaskFactory

When you callfask.Factory, you're calling a static property arask that returns a defaultaskFactory object. The
purpose of a task factory is to create tasks—sigadif, three kinds of tasks:

e “Ordinary” tasks (visstartNew)
» Continuations with multiple antecedents (ZantinueWhenAll andContinueWhenAny)
» Tasks that wrap methods that follow the asynchremmogramming model (vieromAsync)

Interestingly,TaskFactory is theonly way to achieve the latter two goals. In the cds&tortNew,
TaskFactory is purely a convenience and technically redundatitat you can simply instantiatesk
objects and caitart on them.

Creating your own task factories

TaskFactory is not amabstractfactory: you can actually instantiate the classl this is useful when you want to
repeatedly create tasks using the same (nonstgnddues forraskCreationOptions, TaskContinuationOptions,
or TaskScheduler. For example, if we wanted to repeatedly creatgdanningparentedtasks, we could create a
custom factory as follows:

var factory = new TaskFactory (
TaskCreationOptions.LongRunning | TaskCreationOptions.AttachedToParent,
TaskContinuationOptions.None);

Creating tasks is then simply a matter of callingrtNew on the factory:

Task taskl = factory.StartNew (Methodl);
Task task2 = factory.StartNew (Method2);

The custom continuation options are applied whéimgaContinueWhenAll andContinueWhenAny.

TaskCompletionSource

TheTask class achieves two distinct things:

* It schedules a delegate to run on a pooled thread.
» It offers a rich set of features for managing wibekns (continuations, child tasks, exception mdisgaetc.).

Interestingly, these two things are not joinechathip: you can leverage a task’s features for giagavork items
without scheduling anything to run on the threadlpdhe class that enables this pattern of usalisat
TaskCompletionSource.

To useTaskCompletionSource you simply instantiate the class. It expos@ask property that returns a task upon
which you can wait and attach continuations—juga kny other task. The task, however, is entirehtrolled by the
TaskCompletionSource object via the following methods:

public class TaskCompletionSource<TResult>

{
public void SetResult (TResult result);
public void SetException (Exception exception);
public void SetCanceled();

public bool TrySetResult (TResult result);
public bool TrySetException (Exception exception);
public bool TrySetCanceled();

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl. ights reserved. www.albahari.com/threading/ 114

If called more than oncegtResult, SetException, orSetCanceled throws an exception; the-y* methods instead
returnfalse.

TResult corresponds to the task’s result typeTsekCompletionSource<int> gives you aask<int>. If
you want a task with no result, creat@aakCompletionSource of object and pass inull when calling
SetResult. You can then cast theask<object> to Task.

The following example prints 123 after waiting fore seconds:

var source = new TaskCompletionSource<int>();

new Thread (() => { Thread.Sleep (5000); source.SetResult (123); })
.Start();

Task<int> task = source.Task; // Our "slave" task.
Console.WriteLine (task.Result); // 123

In “Concurrent Collections,” we show ha¥lockingCollection can be used to write a producer/consumer queue. We
then demonstrate howaskCompletionSource improves the solution by allowing queued work isstm be waited
upon and canceled.

Working with AggregateException

As we've seen, PLINQ, thearallel class, andasks automatically marshal exceptions to the consufreesee why
this is essential, consider the following LINQ guewhich throws @ivideByZeroException on the first iteration:

try

{
var query = from i in Enumerable.Range (0, 1000000)

select 100 / i;

}...

catch (DivideByZeroException) { ... }

If we asked PLINQ to parallelize this query aniyjitored the handling of exceptions)avideByZeroException
would probably be thrown onseparate threadbypassing outatch block and causing the application to die.

Hence, exceptions are automatically caught andaetinto the caller. But unfortunately, it's not tias simple as
catching adivideByZeroException. Because these libraries leverage many threaslscitually possible for two or
more exceptions to be thrown simultaneously. Taenthat all exceptions are reported, exceptioastarefore
wrapped in amggregateException container, which exposes @nnerExceptions property containing each of the
caught exception(s):

try
{

var query = from i in ParallelEnumerable.Range (0, 1000000)
select 100 / i;
// Enumerate query

}
catch (AggregateException aex)

foreach (Exception ex in aex.InnerExceptions)
Console.WriteLine (ex.Message);

}

Both PLINQ and th@arallel class end the query or loop execution upon eneoimgt the first exception—
by not processing any further elements or loop émdiiore exceptions might be thrown, however, teetbe
current cycle is complete. The first exceptiomggregateException is visible in theInnerException

property.

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl. ights reserved. www.albahari.com/threading/ 115

Flatten and Handle
TheAggregateException class provides a couple of methods to simplifye@tion handlingFlatten andHandle.

Flatten

AggregateExceptions will quite often contain otheggregateExceptions. An example of when this might happen
is if a child task throws an exception. You camitiate any level of nesting to simplify handling ¢gllingFlatten.
This method returns a nevggregateException with a simple flat list of inner exceptions:

catch (AggregateException aex)

foreach (Exception ex in aex.Flatten().InnerExceptions)
myLogWriter.LogException (ex);

}
Handle

Sometimes it's useful to catch only specific examptypes, and have other types rethrown. Adedle method on
AggregateException provides a shortcut for doing this. It accept®aception predicate which it runs over every
inner exception:

public void Handle (Func<Exception, bool> predicate)

If the predicate returnsrue, it considers that exception “handled.” After thedegate has run over every exception, the
following happens:

+ If all exceptions were “handled” (the delegate medédtrue), the exception is not rethrown.

« If there were any exceptions for which the delegaternedfalse (“unhandled”), a newggregateException is
built up containing those exceptions, and is rethr.o

For instance, the following ends up rethrowing droiggregateException that contains a single
NullReferenceException:

var parent = Task.Factory.StartNew (() =>
// We’1l throw 3 exceptions at once using 3 child tasks:
int[] numbers = { @ };

var childFactory = new TaskFactory
(TaskCreationOptions.AttachedToParent, TaskContinuationOptions.None);

childFactory.StartNew (() => 5 / numbers[@]); // Division by zero

childFactory.StartNew (() => numbers [1]); // Index out of range
childFactory.StartNew (() => { throw null; }); // Null reference
1

try { parent.Wait(); }
catch (AggregateException aex)

{
aex.Flatten().Handle (ex => // Note that we still need to call Flatten
{
if (ex is DivideByZeroException)
{
Console.WriteLine ("Divide by zero");
return true; // This exception is "handled"
}
if (ex is IndexOutOfRangeException)
{
Console.WriteLine ("Index out of range");
return true; // This exception is "handled"
}
return false; // All other exceptions will get rethrown
1
}

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl. ights reserved. www.albahari.com/threading/ 116

Concurrent Collections

Framework 4.0 provides a set of new collectionh@tystem.Collections.Concurrent namespace. All of these
are fully thread-safe:

Concurrent collection Nonconcurrent equivalent
ConcurrentStack<T> Stack<T>
ConcurrentQueue<T> Queue<T>
ConcurrentBag<T> (none)
BlockingCollection<T> (none)
ConcurrentDictionary<TKey,TValue> Dictionary<TKey,TValue>

The concurrent collections can sometimes be ugefytneral multithreading when you need a threde-sallection.
However, there are some caveats:

e The concurrent collections are tuned parallel programming The conventional collections outperform themlin a
but highly concurrent scenarios.

e Athread-safe collection doesn’t guarantee thattde using it will be thread-safe (see “Threade &Y.

« If you enumerate over a concurrent collection whitether thread is modifying it, no exception iotlin—instead,
you get a mixture of old and new content.

* There’s no concurrent version lofst<T>.

e The concurrent stack, queue, and bag classes ptenmanted internally with linked lists. This makbem less
memory-efficient than the nonconcurretack andQueue classes, but better for concurrent access bediakse
lists are conducive to lock-free or low-lock implemtations. (This is because inserting a node itittkad list
requires updating just a couple of references,anierting an element intoLast<T>-like structure may require
moving thousands of existing elements.)

In other words, these collections don’'t merely jewshortcuts for using an ordinary collection vatlock. To
demonstrate, if we execute the following code amglethread:

var d = new ConcurrentDictionary<int,int>();
for (int i = @; i < 1000000; i++) d[i] = 123;

it runs three times more slowly than this:

var d = new Dictionary<int,int>();
for (int i = @; i < 1000000; i++) lock (d) d[i] = 123;

(Readingfrom aConcurrentDictionary, however, is fast because reads are lock-free.)

The concurrent collections also differ from convwemnal collections in that they expose special mdsho perform
atomic test-and-act operations, suchiagPop. Most of these methods are unified via the
IProducerConsumerCollection<T> interface.

IProducerConsumerCollection<T>

A producer/consumer collection is one for which tilve primary use cases are:

e Adding an element (“producing”)
e Retrieving an element while removing it (“consuniing

The classic examples are stacks and queues. Pramhreimer collections are significant in pargtiedgramming
because they're conducive to efficient lock-fre@liementations.

TheIProducerConsumerCollection<T> interface represents a thread-safe producer/caarstmtiection. The
following classes implement this interface:

ConcurrentStack<T>
ConcurrentQueue<T>
ConcurrentBag<T>

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl. ights reserved. www.albahari.com/threading/ 117

IProducerConsumerCollection<T> extendsICollection, adding the following methods:

void CopyTo (T[] array, int index);
T[] ToArray();

bool TryAdd (T item);

bool TryTake (out T item);

TheTryAdd andTryTake methods test whether an add/remove operation egetformed, and if so, they perform the
add/remove. The testing and acting are performaahiatlly, eliminating the need to lock as you woatdund a
conventional collection:

int result;
lock (myStack) if (myStack.Count > @) result = myStack.Pop();

TryTake returnsfalse if the collection is emptylryAdd always succeeds and retutnsie in the three
implementations provided. If you wrote your own coarrent collection that prohibited duplicates, heer you'd make
TryAdd returnfalse if the element already existed (an example woeldf pou wrote a concurrese).

The particular element thatyTake removes is defined by the subclass:

e With a stackTryTake removes the most recently added element.
e With a queueTryTake removes the least recently added element.
* With a bag,TryTake removes whatever element it can remove most effity.

The three concrete classes mostly implementitig&ake andTryAdd methods explicitly, exposing the same
functionality through more specifically named puabitiethods such asyDequeue andTryPop.

ConcurrentBag<T>

ConcurrentBag<T> stores amnorderedcollection of objects (with duplicates permittetdncurrentBag<T> is
suitable in situations when yalon't carewhich element you get when calligke or TryTake.

The benefit ofoncurrentBag<T> over a concurrent queue or stack is that a batyisnethod suffers almosio
contention when called by many threads at onceoftrast, calling\dd in parallel on a queue or stack incane
contention (although a lot less than locking aroandnconcurrentollection). Callingrake on a concurrent bag is also
very efficient—as long as each thread doesn’t takee elements thanAtided.

Inside a concurrent bag, each thread gets it owaterlinked list. Elements are added to the pevist that belongs to
the thread callingdd, eliminating contention. When you enumerate okerliag, the enumerator travels through each
thread’s private list, yielding each of its elengeint turn.

When you callrake, the bag first looks at the current thread’s pevist. If there’s at least one eleméiitcan
complete the task easily and without contentiort.iBlle list is empty, it must “steal” an elemdrdm another thread’s
private list and incur the potential for contention

So, to be precise, callinthke gives you the element added most recently onthinaead; if there are no elements on that
thread, it gives you the element added most recentianother thread, chosen at random.

Concurrent bags are ideal when the parallel operat your collection mostly comprisesding elements—or when
theAdds andTakes are balanced on a thread. We saw an example étimer previously, when using
Parallel.ForEach to implement a parallel spelichecker:

var misspellings = new ConcurrentBag<Tuple<int,string>>();
Parallel.ForEach (wordsToTest, (word, state, i) =>

if (!wordLookup.Contains (word))
misspellings.Add (Tuple.Create ((int) i, word));

s

A concurrent bag would be a poor choice for a pcediconsumer queue, because elements are addeenaoed by
differentthreads.

! Due to an implementation detail, there actually needs to be at least two elements to avoid contention entirely.

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl. ights reserved. www.albahari.com/threading/ 118

BlockingCollection<T>

If you call TryTake on any of the producer/consumer collections weudised previously:

ConcurrentStack<T>
ConcurrentQueue<T>
ConcurrentBag<T>

and the collection is empty, the method retufiisse. Sometimes it would be more useful in this scentrivait until
an element is available.

Rather than overloading theyTake methods with this functionality (which would hasaused a blowout of members
after allowing for cancellation tokens and timepuPFX’'s designers encapsulated this functionatity a wrapper class
calledBlockingCollection<T>. A blocking collection wraps any collection thatglements
IProducerConsumerCollection<T> and lets yourake an element from the wrapped collection—blockingaf
element is available.

A blocking collection also lets you limit the totgike of the collection, blocking thpeoducerif that size is exceeded. A
collection limited in this manner is calledaunded blocking collection

To useBlockingCollection<T>:

1. Instantiate the class, optionally specifying tif¢oducerConsumerCollection<T> to wrap and the
maximum size (bound) of the collection.

2. CallAdd or TryAdd to add elements to the underlying collection.
3. CallTake or TryTake to remove (consume) elements from the underlyoiigction.

If you call the constructor without passing in dl@ction, the class will automatically instantiate
ConcurrentQueue<T>. The producing and consuming methods let you §peancellation tokens and timeoutsld
andTryAdd may block if the collection size is bound&dke andTryTake block while the collection is empty.

Another way to consume elements is to GattConsumingEnumerable. This returns a (potentially) infinite sequence
that yields elements as they become available.cémuforce the sequence to end by callingpleteAdding: this
method also prevents further elements from beingened.

Previously, we wrote a producer/consumer queugyusitit andPulse (see “Signaling with Wait and Pulse”). Here's
the same class refactored to 83eckingCollection<T> (exception handling aside):

public class PCQueue : IDisposable

{

BlockingCollection<Action> _taskQ = new BlockingCollection<Action>();

public PCQueue (int workerCount)

{

// Create and start a separate Task for each consumer:
for (int i = @; i < workerCount; i++)
Task.Factory.StartNew (Consume);

}

public void Dispose() { _taskQ.CompleteAdding(); }
public void EnqueueTask (Action action) { _taskQ.Add (action); }

void Consume()

{

// This sequence that we’re enumerating will block when no elements
// are available and will end when CompleteAdding is called.

foreach (Action action in _taskQ.GetConsumingEnumerable())
action(); // Perform task.

¥
}

Because we didn’t pass anything iBfockingCollection’s constructor, it instantiated a concurrent queue
automatically. Had we passed im@ncurrentStack, we'd have ended up with a producer/consumer stack

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl. ights reserved. www.albahari.com/threading/ 119

BlockingCollection also provides static methods callettiToAny andTakeFromAny, which let you add or take an
element while specifying several blocking collenoThe action is then honored by the first coltecable to service
the request.

Leveraging TaskCompletionSource

The producer/consumer that we just wrote is infiexin that we can’t track work items after theyheen enqueued. It
would be nice if we could:

* Know when a work item has completed.
* Cancel an unstarted work item.
» Deal elegantly with any exceptions thrown by a witekn.

An ideal solution would be to have thequeueTask method return some object giving us the functibynalist
described. The good news is that a class alreadisdr do exactly this—theask class. All we need to do is to hijack
control of the task vidaskCompletionSource

public class PCQueue : IDisposable

{

class WorkItem

{
public readonly TaskCompletionSource<object> TaskSource;
public readonly Action Action;
public readonly CancellationToken? CancelToken;

public WorkItem (
TaskCompletionSource<object> taskSource,
Action action,
CancellationToken? cancelToken)

{
TaskSource = taskSource;
Action = action;
CancelToken = cancelToken;

¥

¥

BlockingCollection<WorkItem> _taskQ = new BlockingCollection<WorkItem>();

public PCQueue (int workerCount)

{

// Create and start a separate Task for each consumer:
for (int i = @; i < workerCount; i++)
Task.Factory.StartNew (Consume);

}

public void Dispose() { _taskQ.CompleteAdding(); }

public Task EnqueueTask (Action action)

{
¥

return EnqueueTask (action, null);

public Task EnqueueTask (Action action, CancellationToken? cancelToken)
{

var tcs = new TaskCompletionSource<object>();

_taskQ.Add (new WorkItem (tcs, action, cancelToken));

return tcs.Task;

}

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl. ights reserved. www.albahari.com/threading/ 120

void Consume()

{

foreach (WorkItem workItem in _taskQ.GetConsumingEnumerable())
if (workItem.CancelToken.HasValue &&
workItem.CancelToken.Value.IsCancellationRequested)

{

workItem.TaskSource.SetCanceled();

}

else
try
{

workItem.Action();
workItem.TaskSource.SetResult (null); // Indicate completion

}

catch (Exception ex)

{

workItem.TaskSource.SetException (ex);

¥
}
¥

In EnqueueTask, we enqueue a work item that encapsulates thettdagegate and a task completion source—which
lets us later control the task that we return ®&sdbnsumer.

In Consume, we first check whether a task has been cancéleddequeuing the work item. If not, we run théedate
and then calfetResult on the task completion source to indicate its detrgm.

Here’s how we can use this class:

var pcQ = new PCQueue (1);
Task task = pcQ.EnqueueTask (() => Console.WriteLine ("Easy!"));

We can now wait ottask, perform continuations on it, have exceptions pgaie to continuations on parent tasks, and
so on. In other words, we've got the richness eftisk model while, in effect, implementing our osameduler.

SpinLock and SpinWait

In parallel programming, a brief episode of spimgis often preferable to blocking, as it avoids ¢bst of context
switching and kernel transitionSpinLock andSpinWait are designed to help in such cases. Their maiistise
writing custom synchronization constructs.

SpinLock andSpinWait are structs and not classes! This design decig#mman extreme optimization
technique to avoid the cost of indirection and ggebcollection. It means that you must be careftitm
unintentionallycopyinstances—by passing them to another method witheuef modifier, for instance, or
declaring them aseadonly fields. This is particularly important in the casfesSpinLock.

SpinLock

TheSpinLock struct lets you lock without incurring the costaofontext switch, at the expense of keeping athre
spinning (uselessly busy). This approach is valibigh-contention scenarios when locking will beyerief (e.g., in
writing a thread-safe linked list from scratch).

If you leave a spinlock contended for too long (wealking milliseconds at most), it will yield itsne slice,
causing a context switch just like an ordinary lodkhen rescheduled, it will yield again—in a conghcycle
of “spin yielding.” This consumes far fewer CPUagarces than outright spinning—but more than blogkin

On a single-core machine, a spinlock will startitisgelding” immediately if contended.

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl. ights reserved. www.albahari.com/threading/ 121

Using aSpinLock is like using an ordinary lock, except:

« Spinlocks are structs (as previously mentioned).

* Spinlocks are not reentrant, meaning that you cacalbEnter on the samépinLock twice in a row on the same
thread. If you violate this rule, it will eitherrtbw an exception (ibwner trackingis enabled) or deadlock (if owner
tracking is disabled). You can specify whetherrialde owner tracking when constructing the spinl@kner
tracking incurs a performance hit.

e SpinLock lets you query whether the lock is taken, viaghepertiesIsHeld and, if owner tracking is enabled,
IsHeldByCurrentThread

e There’s no equivalent to C#sck statement to providgpinLock syntactic sugar.

Another difference is that when you cafiter, youmustfollow the robust pattern of providinglackTaken argument
(which is nearly always done withintay/finally block).

Here’s an example:

var spinLock = new SpinLock (true); // Enable owner tracking
bool lockTaken = false;

try

{

spinLock.Enter (ref lockTaken);
// Do stuff...

}
finally

{
if (lockTaken) spinLock.Exit();
}

As with an ordinary locklockTaken will be false after callingenter if (and only if) theEnter method throws an
exception and the lock was not taken. This happewsry rare scenarios (such/&srt being called on the thread, or
anoutOfMemoryException being thrown) and lets you reliably know whetreesubsequently cailxit.

SpinLock also provides aryEnter method which accepts a timeout.

GivenSpinLock’s ungainly value-type semantics and lack of lamgusupport, it's almost as if theyantyou
to suffer every time you use it! Think carefullyfbee dismissing an ordinafyock.

A SpinLock makes the most sense when writing your own reasapichronization constructs. Even then, a spini®ck
not as useful as it sounds. It still limits coneuwnty. And it wastes CPU time doingthing usefulOften, a better choice
is to spend some of that time doing somettipgculative—with the help ofSpinwait.

SpinWait

SpinWait helps you write lock-free code that spins rathantblocks. It works by implementing safeguardavioid the
dangers of resource starvation and priority inershat might otherwise arise with spinning.

Lock-free programming witBpinWait is ashardcoreas multithreading gets and is intended for whemenaf
the higher-level constructs will do. A prerequisgdo understand “Nonblocking Synchronization”.

Why we need SpinWait
Suppose we wrote a spin-based signaling systendipasely on a simple flag:

bool _proceed;
void Test()

{

// Spin until another thread sets _proceed to true:
while (! proceed) Thread.MemoryBarrier();

}...

This would be highly efficient ifest ran when proceed was already true—or ifproceed became true within a few
cycles. But now suppose thairoceed remained false for several seconds—and that foeats calledest at once.

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl. ights reserved. www.albahari.com/threading/ 122

The spinning would then fully consume a quad-caP&JCThis would cause other threads to run slowdgdurce
starvation)—including the very thread that migh¢etually set proceed to true (priority inversion). The situation is
exacerbated on single-core machines, where spimilhgearly alwayscause priority inversion. (And although single-
core machines are rare nowadays, single-eioheal machinesare not.)

SpinWait addresses these problems in two ways. FirstnitdiCPU-intensive spinning to a set number oftiens,
after which it yields its time slice on every sy callingThread.Yield andThread.Sleep), lowering its resource
consumption. Second, it detects whether it's rugimin a single-core machine, and if so, it yieldewery cycle.

How to use SpinWait

There are two ways to useinWait. The firstis to call its static methaoshinuntil. This method accepts a predicate
(and optionally, a timeout):

bool _proceed;
void Test()

{
SpinWait.SpinUntil (() => { Thread.MemoryBarrier(); return _proceed; });
¥
The other (more flexible) way to useinWait is to instantiate the struct and then to salinOnce in a loop:

bool _proceed;
void Test()

{
var spinhWait = new SpinWait();
while (! _proceed) { Thread.MemoryBarrier(); spinWait.SpinOnce(); }

}
The former is a shortcut for the latter.

How SpinWait works

In its current implementatiospinwait performs CPU-intensive spinning for 10 iteratikme$ore yielding. However, it
doesn't return to the callammediatelyafter each of those cycles: instead, it caftilsead . SpinWait to spin via the
CLR (and ultimately the operating system) for atgeé period. This time period is initially a fewrts of nanoseconds,
but doubles with each iteration until the 10 itenas are up. This ensures some predictability énttital time spent in
the CPU-intensive spinning phase, which the CLR@mefrating system can tune according to conditidgpically, it's
in the few-tens-of-microseconds region—small, boterthan the cost of a context switch.

On a single-core machingpinWait yields on every iteration. You can test whethietnwait will yield on the next
spin via the propertjextSpinWillyield.

If a SpinWait remains in “spin-yielding” mode for long enoughaybe 20 cycles) it will periodicallsieepfor a few
milliseconds to further save resources and helprdtireads progress.

Lock-free updates with SpinWait and Interlocked.CompareExchange

SpinWait in conjunction withinterlocked.CompareExchange can atomically update fields with a value calcediat
from the original (read-modify-write). For exampsippose we want to multiply fieldby 10. Simply doing the
following is not thread-safe:

X = X * 10;
for the same reason that incrementing a field temead-safe, as we saw in “Nonblocking Synchratidn”.
The correct way to do this without locks is asdals:

4. Take a “snapshot” of into a local variable.

5. Calculate the new value (in this case by multiglyihe snapshot by 10).

6. Write the calculated value baifkhe snapshot is still up-to-date (this step mestitne atomically by calling
Interlocked.CompareExchange).

7. If the snapshot was stakpinand return to step 1.

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl. ights reserved. www.albahari.com/threading/ 123

For example:

int x;

void MultiplyXBy (int factor)
{
var spinhWait = new SpinWait();
while (true)
{
int snapshotl = x;
Thread.MemoryBarrier();
int calc = snapshotl * factor;
int snapshot2 = Interlocked.CompareExchange (ref x, calc, snapshotl);
if (snapshotl == snapshot2) return; // No one preempted us.
spinWait.SpinOnce();
¥
¥

We can improve performance (slightly) by doing awath the call toThread.MemoryBarrier. We can get
away with this becausempareExchange generates a memory barrier anyway—so the worst#rahappen
is an extra spin ifnapshot1 happens to read a stale value in its first iterati

Interlocked.CompareExchange updates a field with a specified valifi¢he field’s current value matches the third
argument. It then returns the field’s old valueysa can test whether it succeeded by comparirtgatieinst the
original snapshot. If the values differ, it meamattanother thread preempted you, in which casesgouand try again.

CompareExchange is overloaded to work with thebject type too. We can leverage this overload by wririgck-
free update method that works with all referengesy

static void LockFreeUpdate<T> (ref T field, Func <T, T> updateFunction)
where T : class
{
var spinhWait = new SpinWait();
while (true)
{
T snapshotl = field;
T calc = updateFunction (snapshotl);
T snapshot2 = Interlocked.CompareExchange (ref field, calc, snapshotl);
if (snapshotl == snapshot2) return;
spinlWait.SpinOnce();
}
}

Here’s how we can use this method to write a thusesdd event without locks (this is, in fact, wha IC# 4.0 compiler
now does by default with events):

EventHandler _someDelegate;

public event EventHandler SomeEvent

{
add { LockFreeUpdate (ref _someDelegate, d => d + value); }
remove { LockFreeUpdate (ref _someDelegate, d => d - value); }

}

SpinWait Versus SpinLock

We could solve these problems instead by wrappicgss to the shared field arounsipanLock. The

problem with spin locking, though, is that it allewnly one thread to proceed at a time—even thehegh
spinlock (usually) eliminates the context-switchmgerhead. WitlspinWait, we can proceed speculatively
andassumeno contention. If we do get preempted, we simphagain. Spending CPU time doing something
thatmightwork is better than wasting CPU time in a spinlock

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl. ights reserved. www.albahari.com/threading/ 124

Finally, consider the following class:

class Test

{

ProgressStatus _status = new ProgressStatus (@0, "Starting");

class ProgressStatus // Immutable class

{
public readonly int PercentComplete;
public readonly string Message;

public ProgressStatus (int percentComplete, string message)
{
PercentComplete = percentComplete;
Message = message;
}
}
b

We can use ourockFreeUpdate method to “increment” theercentComplete field in _status as follows:

LockFreeUpdate (ref _status,
s => new ProgressStatus (s.PercentComplete + 1, s.Message));

Notice that we're creating a neogressStatus object based on existing values. Thanks ta.theFreeUpdate
method, the act of reading the existirecentComplete value, incrementing it, and writing it back cagétunsafely
preempted: any preemption is reliably detectedgéting a spin and retry.

More than 350,000 downloads

LINQPad

FREE

Written by the author of this article,
and packed with hundreds of samples

www.linqpad.net

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl. ights reserved. www.albahari.com/threading/ 125

